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Weyl symmetry and the trace anomaly

2/40



Classical Weyl symmetry

Local Weyl rescalings

8w — g;w = ez"gu,, O — P ="

Metric is the source of the energy-momentum tensor

2.5
V8 08uv

TH =

Nother identities of Diff and Weyl symmetries on-shell

V. T =0 T, =0

3/40



Quantum Weyl symmetry

From the path-integral

el = /[dd)] e >

The renormalized EMT

gy _ 20T
V8 08w
Trace is dimension d operator and the anomaly Duff, Deser-Schwimmer, Jack-Osborn ...

(T#,) = geometry + renormalization group + flavor and EOMs
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Plan

What | would like to understand is this structure

(T*,) = geometry + renormalization group + flavor and EOMs

Plan: discussion on symmetries and then tools for the job:
» renormalization group = Local RG
> geometry == Ambient space and nonlocal actions
» flavor and EOMs = Flavor current and B-functions
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Weyl vs conformal symmetry
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Weyl symmetry —> Conformal symmetry

Conformal (isometries) group

53 g + O¢ 8 = 208 + Vyuby + V& =0

Solution o = —%VME"
05 =0 +6f
Flat space limit gy, — 1 has (d+1)2(d+2) = d(d2+1) + d + 1 generators (d # 2)

P., Juw, D, K,

7/40



Conformal symmetry — Weyl symmetry?

Conformal invariance in flat space d # 2 implies Polchinski

TH, = 8,0,X"

There exists a new EMT

(20 DX 0y = P Xy — T O D X P 02X ~0,0,X)

;L 1 1
T = Tt 55 )*(d “1)d - 2) (o

New action “improved” with Schouten K, %(RW — ﬁRgW)

5[0, g] — S'[, g] = S[b. g] + / 0x K, X1
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A side note: primary EMT

Representation theory ISM ~ a' and Ru ~ a similar to that of harmonic oscillator

RH’ T()éﬂ x=0 = 0
In d # 2 and 4 can be made primary including Z,, Stergiou-Osborn, Stergiou et al.
1! / ]. 2 a 1 ) aIB
T = Tuw d 2 (26 T ) + ) B ﬁ(auav — Nuw07)0a0sZ

Geometrically Weyl invariance fixes Z,,, with Bach B, = V2RW + ...

1
S[6.g] — S'0.8] = S'0gl + -, [ dx B2+

9/40



Weyl /conformal vs scale invariance
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Scale vs conformal symmetry
For a rigid scale transformation o = const.

/ d9%\/gT", =0

Implies the existence of a virial current D,

T™",=V,D"

The current must not have anomalous dimension, and ideally

(TH, —V,D") = geometry + beta terms
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A source for D,: gauging the Weyl group

Introduce an Abelian gauge potential lorio et al., Percacci et al., Sauro et al.

8w — g/’“, = ezagw, S, — SL =S, —0u0 d— O ="

The unique gauged covariant compatible derivative

Vi =V, 0+ L, d+weS,d = V0 =e"7V,0
It contains “disformation” because dilatations do not commute with Poincaré
« 1 « (6% o
(Lu) B = E(Sﬁéu + Su% -5 gﬂu)

Also, S,, ~ T, can be interpreted as torsion vector Karananas-Shaposhnikov, Sauro et al.
[ 2
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Consequences of gauging Weyl

There is a new dilation current Sauro et al.

2 4S 1 0S

-

VB g N

TH =

Classically gauged Weyl and Diff symmetries with W = dS imply

T, = V"D, VuTH + D,WH =0

In the limit Su — 0 we have scale invariance and D, is virial

TH, = V"D, V. T =0
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Example of scale-but-not-conformal model

Dipolar ferromagnet (Aharony-Fisher)

Siel = [ {5002 + TS+ S ¢ [ @ [ @y auite o)

Notice that ¢/ “remembers” that it is a vector. In momentum space (localized with B)

qiq;
q2

U(q) ~v

Renormalization of virial current protected by hidden shift symmetry  Gimenez-Grau et al.
Later we see elasticity/membrane briefly
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Local RG analysis of the anomaly

(T*",) = geometry + @enormalization grou@ + flavor and EOMs
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Renormalization with local couplings

Use local couplings to source observables Shore, Osborn, Jack-Osborn

53—/&A@XQw,

Currents source the expectation values

2 o 1 or 1 6T
L R — DHy=-—"——" (O} =———
(1) N (D*) N (Oi) N

We expect the path-integral to give the anomaly

(TH, —VFD,) = geometry + beta terms
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Local rg interpretation

Local scale transformation on the geometrical sources
AV = /{2Ugw5giy - (9#0(;;“}
Local scale transformation caused by the rg beta functions
Aﬁ = —/Uﬁi(sii

The anomaly of I is expressed

AT = APT + A, As O {0uN' R, Sy Wy -}
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Wess-Zumino consistency

Rewrite

AT = (AW — MO = A,

For Wess-Zumino's consistency and Abelian transf.

[Ay, AT =0

Consistency condition for the anomaly

(AY —ADA, — (0= 0')=0
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Example: two dimensions

Most general parametrization of A, using R = R — 2VHS,
1 . PO ,
Ao = 5 / d2x\/§{a%bl? - a%auxaw — 90w 0"\
i

S .
+ 0BV, 5" + 0"8725“5“ +oz0uN'S" |

Apply Wess-Zumino's

[Ay, AT = /d2xf(aa o' —0'9,0) 2" =0

Condition Z, = 0,)\"37,' + 5,X = 0 among tensors becomes (here 0; = 0/0g;)
Vi = =0ifu + xjf — B ojwi — w0, + zi
X =p5 - pos5 —zp
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A special scalar charge
Define a new charge
By = By + w3’

Using©®=p0;and T=T —-0-D
(T(X)T(0)) — (©(x)8(0)) ~ Sud*s(x)

Using WZ consistency

d - a3 i
HgDv = B0Bv =88 + 53
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(Ir)reversibility and gradient structure

For flows between unitary CFTs there is x;j — Gj = % |x[* (0i(x)0j(0)) >0

,udi By >0 — Zamolodchikov’s theorem
"

For flows between nonunitary CFTs we only have A such that

B =+19;A identifying Xij < Vi), A B

For flows between scale-but-not-conformal-invariant theories

Bf is an obstruction to both properties
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Simple application: theory of elasticity

Elastic 2d membrane with strain vy, = 9, u,) considered by Cardy-Riva
S[u] = /d2 {2g U uh” + kuu“uyl’}

Gauging Upy — V(,uuu) we find Benfatto et al. in prep.

/d2 13g+5k 3g+k hg (3g + k)?
6(2g + k) 2g + k M 4g(2g + k)

SuS"} +

Charges o = By = g and BS = 0 in the global conformal limit 3g + k =0

_5 g 2 s (Bg+k)?
B¢_§+(2g+k) ﬁ"’_3 62__4g(2g+k)
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Extension to 4d

In d = 4 (schematically, case S, = 0) Osborn, Jack-Osborn
Ay D /d4x go{ﬂa& + -+ XFONON + XERMON 0N + }
The “positive” metric is x§ ~ (0;0;), but
B~ G0
Not obvious to establish positivity of xf-’;- because it is a 3pf (only perturbatively)
Xg ~(0;0;T)
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Conformal geometry and ambient space

TH,) = (geometry) + renormalization group + flavor and EOMs
m
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Lightcone embedding in flat space
Move from RY to R9*2 on the lightcone

YA=(YH, YT, Y) nasYAYEB =0 YA ~ AYA

Spacetime embedding in the lightcone

xH = YA = (YR YT YT = YH(x* 1, —x?)
YH

A no__
Y& — x = v

Embedding Lorentz generates conformal on spacetime
(Y"")znw,dxl“dx’” = (Y+)277de"dxy
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Fefferman-Graham ambient space

Use Cartesian coordinates, X2 = 2t%p, t = X*

142p — x? 1—2,0—|—x2)

YA Ly xA — (X;L7Xd+17Xd+2) * t(x“, : ’ :

The flat embedding metric

ii = nagdx?dx® = 2pdt? + 2tdtdp + t%1),,, dx" dx”

In curved space: FG metric with Ragp =0, L:9,& = 2& and h,,(x,p =0) = gu

g = Bapdx?dx® = 2pdt? + 2tdtdp + t?h,,,(x, p)dxtdx”
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Ambient Space in a nutshell

% d+2
w.c_ﬁ n&'

Coapn
Pep
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Relation with AdS/CFT

r2

Coordinates p = —%5 and t = 2
dr? + hu(x, r)dx*dx”
5 — 2 2 JLANSE!
g=—ds"+s ( ) )
Asymptotically (in r) local (in s) AdS space Parisini-Skenderis-Withers

Fixed s: approaching lightcone with hyperobolas. Geometrical fundation of AdS/CFT

Note: If you are familiar with AdS/CFT you can replace p <+ r otherwise don't worry
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PBH diffeomorphisms

A diffeomorphism of the ambient Imbimbo et al.
Oc8ag = LcBag = (COcBas + EacOBCC + BrcOalC
c8aB = L¢cgag = (- 0cgaB + 8acOB(™ + 8BcOAC
If it preserves the form of the ambient metric Penrose-Rindler, Brown-Henneaux

¢t =to(x) P = —2po(x) CH = M (x) + - -

It generates Diff x Weyl on spacetime

chuvlp=0 = 0c8uv = b5 e8u = 208w + V& + V&
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Ricci-flatness determines h,,

Expand in p to solve Rag =0 iteratively

hu (X, ) = guv(x) + phM 1, + pzh(z)

The coefficients find obstructions in even d

2 R
1 2K
T +d 2<R“” 2(d )g‘“’> me
W3, = ——— 7B +2Ku0 K7y
2
3 _
M =+ =g B+

Fefferman-Graham
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Ambient Laplacian(s)

Scalar Laplacian of the embedding

1 2 1 d
—0® = — 5040 — 200, — 0,0 - a ot LW 10,0

Consider a scaling scalar field ® = t2¢(x) and project to Yamabe

d—2
0|, =tRe2(_O, - — =
#¥lp—0 = 1572~ 4(d71)R>‘P

We can construct a family of powers of conformal GJMS Laplacians Graham et al.

2n+d

Panp(x) = t7 2 (=8g)"(¢

—d
E ©)p=0
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Conformal Laplacians and conformal invariants

There are derivative Ay, ~ 92" and constant parts (exist in d > 2n)

d—2n
2

P2n(P(X) = Agp + Q2n

Constant part transforms nicely: Q-curvatures in d = 2n Branson et al.

VEBQd = V&(Qa + Ago)

Conformal invariants are also easy to obtain

7%7 — W,‘ e.g. I%%BCD — Wiuaﬁ
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On Cardy’s conjecture

Cardy’s conjecture
(TF.) =D bW + aEq

However, we have all “integrable” geometrical terms such that

[05, 0, ] Wi =0 [05,0,7] Qs =0

Notice: E4 ~ Qg for conformally equivalent! The natural ansatz:

(TF) =D bW+ aQq
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Ambiguities and integration

Integration is possible (schematically)

Mr=rcgl+ / ddx\/g(b,-W,- +aQy) Alde

In d = 2 works wonderfully

Mo e /dzfo R —  (TC)T(O) ~ ¢/ x*

But
» In d = 4 disagreement with momentum space CFT from (OOQO) Coriand’s group
» From d = 6 ambiguities: Riem # 0 param. families of (Ag, Q6)  Paci et al. in prep.
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An eye towards Wilsonian RG

FRG-based relations for central charge in 2d LPA Codello-D’ Odorico-Pagani

kOicx = —24x kakre—ok[ewa¢7e2og”f(8o.)2

Integrable form of ' in 2d LPA Codello-D’Odorico-Pagani

1 1 o 1
o [ VeV — 5 [ VR R - o [ VERAR

Furthermore:
» Local RG analysis of Polchinski egn. in presence of a UV cutoff Ellwanger, ...
» Irrelevant operators require beta function for g, !!! Schwimmer-Theisen
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And one more thing...

(T*#,) = geometry + renormalization group + (Havor and EOMs)
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The troubles with going on-shell and many flavors

Introducing a “fundamental” field ®

S[®] = Skin[®P] + /ddx(A’O; +J- q>)

Global flavor symmetry w € Gr of Sy, promoted to local by introducing gauge A,

; 1 or
F®, g, ', ALl JE=——

VE 0Au

Trace-anomaly in flat-space constant couplings limit Jack-Osborn, Herren-Thomsen

T, =B'0j+v-0,Jf — TH,=B0;
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Implications of flavor-improved RG

Conformal invariance

TH, =0 < B'=p —v-N=0

In practice, there is an antisymmetric part to wavefunction of the kinetic term fixed by

Afr=o

Example #1: S-functions of SM are ill-defined, but B-functions are not Herren-Thomsen

Example #2: ¢* RG has gradient structure only in terms of B-functions Pannell-Stergiou
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Conclusions

» Protected dimension d and d — 1 operators: (T) and (D*)
» Rich geometrical structure of conformal anomaly linked to scale
» Implications for Quantum Gravity?

> Largely unexplored relations with cutoff-based schemes

Ellwanger
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Thank you
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