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Disordered systems in physics:

Interplay of interactions and quenched
disorder

® Multiple low-energy metastable states
(energy minima) => Complex, rugged,
energy or free-energy landscape.

® Due to quenched disorder, long-distance physics influenced by
nonuniform configurations, singular collective events (avalanches),
and/or rare excitations (droplets) on all scales.

e Often: Disorder-induced fluctuations dominate over thermal
(quantum) fluctuations. Disorder grows under coarse-graining.



Disordered systems in physics:
Interplay of interactions and
quenched disorder

® How to describe these phenomena? Standard perturbative RG fails!

® Random field, random anisotropy systems, elastic manifolds in a
disordered environment, Bose glass, etc.: nontrivial zero-temperature
fixed points and functional RG.

® Spin-glass phases and alike: nontrivial zero-temperature fixed points
but so far no satisfactory RG description.

® Random transverse field Ising model, quantum Griffiths phases, MBL,
etc.: Real space functional RG (strong disorder RG and infinite
randomness fixed points).



Outline

® Why a nonperturbative functional RG (from a
physical/phenomenological perspective) and
how?

e Oddities of the resulting fixed-point theories.



Why and how a functional RG?

® [llustration for the random-field Ising model (RFIM)

Lattice version: = —J Z SiS; — Z i + H)S;
<1,7>
Field theory:

Sulel = [ a5 (Vola)? + Je(@) + Sola)! - ha)e(@)

+ quenched random field:  h(z) =0, h(z)h(y) = AS'D(z — y)

® Main puzzling feature: dimensional reduction (DR) to the
pure model in d-2 associated with supersymmetry (Parisi-
Sourlas SUSY) and its breakdown as a function of space
dimension d.



Avalanches in the T=0 equilibrium RFIM

® Computer simulation: Discontinuous changes of the ground state
(avalanches or shocks) under applied source H.

Sequence of avalanches in the GS of Cross-section of a spanning
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® At criticality, avalanches on all scales; in a finite system (L) they have
a size (5) distribution =S/ Smax(L)

pL(S) = po,L.—¢;
SmaX(L) ~ Ldf, 1< 7 <2




Direct signature of avalanches

® The ground state (GS) jumps discontinuously (possibly
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® Then, the second cumulant of the magnetization /

and the associated pair correlation function for
slightly different sources +8J, has a nonanalytic

behavior (a “cusp” in V8J2) when 8J - 0.

LY ¢gsn(—0)pasn(0J) = L ¢gsn(0)2 4+ O(5J%)
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Cusp amplitude = Second moment of the avalanche distribution

which diverges with the system size L at criticality.



Why functional (in the fields)?

e Kffect of avalanches (and low-energy droplet excitations at 7>0) can
be captured in a disorder-averaged description, provided one keeps
the functional dependence of the cumulants on the sources/fields,
e.g., for the free-energy functional Wy[J] = In Z[J]:

cuim

Wl[Jl] = Wh[Jl], WQ[Jl, JQ] — Wh[Jl]Wh[JQ] e

® For instance, the "cusp" shows up in the second derivative of
second cumulant, 95,05, Ws|J1, J2], when J; — J5 .

® Equivalently, study the 1-PI cumulants associated with the
effective action: I'1[¢1], I's[o1, ¢2], I's[d1, 2, @3], - -

® Importantly, effect is already captured in low-order cumulants
and for uniform source/field configurations. Not true for
Griffiths phase and exponentially rare large-scale excitations.



Exact Functional RG for the 1-Pl cumulants

® Evolution of the scale-dependent effective action T'k, with decreasing
k is described by an exact (functional) RG equation [Wetterich, 1993]:

1

OkTr[{da}] = 5 Trace{(T}” [{da}] + Ri) " Ry}

with T';[{¢a}] obtained by coupling copies/replicas of the disordered

system to distinct sources J, and then Legendre transform.

® From it, hierarchy of exact functional RG equations for the flow of the

1-Pl cumulants:
011

0110
Orl'k3

9] = Fa [T, T0)],
b1, Po| = Fk2[rl(<21)a F/(fg)a F;(fg)],

b1, 2, O3] = Fis [F;i%),rl(fz),r,i%),F,({i)], etc.



Nonperturbative FRG

® Guided by considerations on avalanches, nonperturbative approximation
scheme = combined truncation of
* Expansion in the number of derivatives of the fields
(around uniform configurations)

* Expansion in cumulant order.

® Example of truncation (referred to as DE2):

Cualo] = [ [06(6(0) + 5 2(6() @:0(2)* + 00"
Cialor. 2] = [ Vilén(2), 02(w) + O(@?)]

T

Fk,ng = 0.

® Crucial not to explicitly break underlying Parisi-Sourlas SUSY.
® Key quantity: Ag (o1, d2) = Oy, 0s, Vie(P1, P2) = Vk(ll)(%, P2)



Cusp in the functional dependence
and SUSY/DR breakdown

® In dimensionless form (appropriate for a zero-temperature fixed point):
Opuy(p) = Buw (¢), t=In(k/Auv),
Opzi () = B=(),
Op0r (01, 02) = Bs(1, 2)

® Second cumulant of the RF &k with v = (1 4+ 2)/2, d = 1 — VYo

1
Nocusp : 6(ip,0p) = do(p) + 50a()op" + - -

1 -
Cusp : 3(i0,09) = 00(9) + aeusp(0)0p| + 502()0¢" + -

® Cusp breaks SUSY and dimensional reduction: Takes place below some dpr.

® A simple signature in 928(ip, §¢p) /050 |sp—0



Solution of the NP-FRG flow equations:
CUSp Versus no cusp

Signature in the flow of the second cumulant d«(@1,¢>):

Cusp in y=0¢p=(p1-¢p2) below dpr~ 5.1 versus no cusp above.

020k/0%y(y=0) blows up in a finite Flow of the dimensionless second

RG time t for d < dpr (red curve), cumulant &k in d=4 < dbr
not for d > dpr (blue curve)
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[M. Tissier, G.T., PRL, PRB, 2011, 2012]



Oddities of the resulting fixed-point theories

Transition between different types of critical behavior at
a nontrivial critical dimension dpr
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dpr ~ 5.11 +0.09

® Below dpgr, nonanalytic (zero-temperature) fixed-point
effective action

® Unconventional pattern of disappearance/appearance of
fixed points around dpr: requires a functional description!



Oddities and need for a functional description

® In dpr, coalescence of two cuspless fixed points and emergence of a
cuspy fixed point below dpr thru a boundary-layer mechanism:

5
d — dpg : 0(,0¢9) = do() + (dpr — d)* f(e, (dDR| fli)u/Q) -

® Cannot be pictured in a simple diagram with few coupling constants.
Some quantities and exponents are continuous, some are
discontinuous as a function of d.

Anomalous field dimensions are continuous Eigenvalue of the cuspy perturbation is discontinuous
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Anomalous increase of the correction-to-
scaling exponent below dpr = 5.1

As a result of the boundary-layer mechanism, anomalous
square-root behavior:

NP-FRG result for the lowest irrelevant eigenvalue
(correction to scaling) 4 near dpr
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[Balog, G.T., Tissier, PRE, 2020]



The need to be nonperturbative...
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Slava Rychkov and his collaborators solved a 40-year-old problem

posed by the Parisi-Sourlas conjecture

Press release — 8 September 2022

® Perturbative RG description of destabilization of the SUSY/DR
fixed point by irrelevant operators in d=6 that become less so
as €=6-d increases. [Rychkov, Trevisani et al., 2021-2024]

2-loop calcul.

SUSY/DR
FP unstable

12

® Already in FRG description:

L. 0(p, 0p) = do()
e (1/2)62(0)00? s Fy
+1/(4N84(p)6p* — Fq




The need to be nonperturbative...

® Perturbative RG is intrinsically unable to capture the disappearance
of the SUSY/DR cuspless fixed point at dpr. Focus on eigenvalue A,

(associated with &2 and the most dangerous operator Fs4) above dpr
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® Check robustness of NP-FRG results by study of successive
approximation orders => Rapid apparent convergence (from LPA’ to
LPA” to DE2 to DE4): dpr ~ 5.11 & 0.09 [G.T,, Tissier, Balog, 2024]




Conclusion

® Many collective phenomena in disordered systems require a
functional RG (functional in the order-parameter fields).
= For random-field, random-manifold and alike models, solution
can be obtained through a combined truncation of the cumulants
series and the derivative expansion.

® Resulting zero-temperature fixed-point theories are unusual (e.g.,
nonanalyticities in the functional dependence of the 1-PI cumulants).
= |n random-field models disappearance of the SUSY/dim.-red. fixed

point and emergence of a “cuspy” fixed point is highly
unconventional and can only be described via a functional and
nonperturbative RG.

® Exponentially rare events and Griffiths phenomena: Functional but
whole distributions?



