
When the RG must be functional 
and nonperturbative… 

Lessons from disordered systems

Gilles Tarjus (LPTMC, CNRS-Sorbonne Univ., Paris) 

Matthieu Tissier (LPTMC), Ivan Balog (Physics Institute, Zagreb) 

ERG 2024



• Multiple low-energy metastable states  
(energy minima) =>  Complex, rugged,  
energy or free-energy landscape. 

• Due to quenched disorder, long-distance physics influenced by 
nonuniform configurations, singular collective events (avalanches), 
and/or rare excitations (droplets) on all scales. 

• Often: Disorder-induced fluctuations dominate over thermal 
(quantum) fluctuations. Disorder grows under coarse-graining.
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• How to describe these phenomena? Standard perturbative RG fails! 

• Random field, random anisotropy systems, elastic manifolds in a 
disordered environment, Bose glass, etc.: nontrivial zero-temperature 
fixed points and functional RG. 

• Spin-glass phases and alike: nontrivial zero-temperature fixed points 
but so far no satisfactory RG description. 

• Random transverse field Ising model, quantum Griffiths phases, MBL, 
etc.: Real space functional RG (strong disorder RG and infinite 
randomness fixed points).

3

Disordered systems in physics: 
Interplay of interactions and  

quenched disorder

Complexity of high-dimensional landscapes 

In this talk:  
Structure of random landscapes  

in large dimension N 
ℰ

[s]ℰ

configuration space of dim. N ≫ 1

ss*
preferred 
conf.



• Why a nonperturbative functional RG (from a 
physical/phenomenological perspective) and 
how? 

• Oddities of the resulting fixed-point theories.

Outline



Why and how a functional RG?

• Illustration for the random-field Ising model (RFIM) 

Lattice version: 

Field theory: 

+ quenched random field: 

• Main puzzling feature: dimensional reduction (DR) to the 
pure model in d-2 associated with supersymmetry (Parisi-
Sourlas SUSY) and its breakdown as a function of space 
dimension d. 
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Avalanches in the T=0 equilibrium RFIM 
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• Computer simulation: Discontinuous changes of the ground state 
(avalanches or shocks) under applied source H. 

• At criticality, avalanches on all scales; in a finite system (L) they have 
a size (S) distribution <latexit sha1_base64="iPlipbHblDZc3SZmdZzYFkfVSGI=">AAACbXicbVFba9swGJW9W+fdvI497MIQC2tT6FK77AbtRmEve8hDR5a2ECVGlj8nopJsJHksCL/tF+5tf2Ev+wtT0jDWdgcEh3POxycd5bXgxibJzyC8cvXa9RtrN6Nbt+/cvRffXz8yVaMZDFklKn2SUwOCKxhabgWc1BqozAUc56cfF/7xV9CGV+qLndcwlnSqeMkZtV7K4u8khylXjgo+VVC00QbRsyrrdwdb75fMJdv9lpSaMgcT93KwM8gc0RJL+q3t9rfa1g0mxNKmxYRsROdNYrjE/YkrsrLdJntkD6f7i+z+bkRAFX+XZnEn6SVL4MskXZEOWuEwi3+QomKNBGWZoMaM0qS2Y0e15UxAG5HGQE3ZKZ3CyFNFJZixW7bV4hdeKXBZaX+UxUv13wlHpTFzmfukpHZmLnoL8X/eqLHlu7Hjqm4sKHa2qGwEthVeVI8LroFZMfeEMs39XTGbUd+s9R8U+RLSi0++TI52e+mb3uvPrzoHH1Z1rKEn6DnqohS9RQfoEzpEQ8TQryAOHgWPg9/hw/Bp+OwsGgarmQfoHMLNP7zSuYc=</latexit>

⇢L(S) = ⇢0,L
e�S/Smax(L)

S⌧

Smax(L) ⇠ Ldf , 1 < ⌧ < 2

Cross-section of a spanning 
avalanche at criticality in 3d

Sequence of avalanches in the GS of 
a 3d-RFIM sample [Liu-Dahmen, ’08]
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FIG. 1: (Color online) Disorder dependent avalanche behav-
ior in RFIM. Main panel: Magnetization curves in equilibrium
(green) and non-equilibrium (red), below, near and above the
critical disorder Rc. Insets: Cross-sections of 3D systems
showing all the avalanches (denoted by different colors) oc-
curring during those magnetization processes. The calcula-
tion is done on 3D Gaussian zt-RFIM with system size 643.
Non-equilibrium: (a) R = 2.0, (b) R = 2.224, (c) R = 2.6.
Equilibrium: (d) R = 2.25, (e) R = 2.45, (f) R = 2.9. Note
that Rneq

c = 2.16±0.03 and Req
c = 2.28±0.01 for 3D Gaussian

RFIM [11, 17].

metastable state: each spin flips deterministically when
its effective local field heff

i = J
∑

j sj + hi + H changes
sign [9, 11]. Due to the nearest neighbor interaction, a
flipped spin will push a neighbor to flip, which in turn
might push another neighbor, and so on, thereby gener-
ating an dynamic avalanche.

To study whether the shape of the random field distri-
bution would affect the avalanche behavior, we consider
four different types of ρ(h)’s: (1) Gaussian: ρG(h) =

1√
2πR

exp(− h2

2R2 ); (2) Lorentzian: ρL(h) =
1
2π

R
h2+(R/2)2 ;

(3) parabolic: ρP(h) =
R2−h2

4R3/3 for h ∈ [−R,R] and 0 else;

(4) uniform: ρU(h) = 1
2R for h ∈ [−R,R] and 0 else. In

all cases, ρ(h) is symmetric around h = 0 and the gener-
alized “width” R will be called the disorder parameter.

Fig.1 shows the M(H) curves and corresponding
avalanches occurring during the magnetization processes
at different disorders in both equilibrium (d,e,f) and non-
equilibrium (a,b,c). For R < Rc (a,d), most spins tend
to flip collectively in a system spanning avalanche seen
as a macroscopic jump in the magnetization curve. For
R > Rc (c,f), spins tend to flip individually and result
in many microscopic avalanches and a macroscopically
smooth magnetization curve. For R ∼ Rc (b,e), jumps
(avalanches) of all sizes are seen in the magnetization
curve. Qualitatively, we find that static and dynamic
avalanches show similar disorder dependent behavior.

To quantitatively study the similarity of static and dy-

namic avalanches, we first study the avalanche size dis-
tribution integrated over the external field [11]. Near the
critical disorder Rc, its scaling form can be written as

Dint(S,R) ∼ S−(τ+σβδ) D̄int
± (Sσ|r|) (1)

where S is the avalanche size, i.e. the number of spins
participating in an avalanche, ± refers to the sign of the
reduced disorder r = (Rc − R)/R, σ gives the scaling
of the largest avalanche size Smax ∼ |r|−1/σ, β and δ
give the singularities of M(H) near the critical point
(Hc, Rc). Here, the critical field Hc is defined to be
the field where the slope of M(H) goes to ∞. In non-
equilibrium, Dint(S,R) for Gaussian ρ(h) has been stud-
ied extensively. The critical exponents (τ + σβδ) =
2.03±0.03, σ = 0.24±0.02 and the universal scaling func-

tion D̄int
− (X) = e−0.789X1/σ

(0.021+ 0.002X + 0.531X2 −
0.266X3+0.261X4) were obtained from scaling collapses
of Dint(S,R) at different disorders [11].
Fig.2(a) shows that for Gaussian, Lorentzian and

parabolic ρ(h)’s, and for both static and dynamic
avalanches at different disorders, with the same pair of
critical exponents: (τ + σβδ) = 2.03 and σ = 0.24, 24
Dint(S,R) curves collapse onto a single one. The uni-
versality that the three different ρ(h)’s show the same
avalanche behavior is not a surprise at all. A renormal-
ization group (RG) analysis has shown that, at least in
non-equilibrium, what matters is just ρ′′(0), i.e. the sec-
ond derivative of ρ(h) at h = 0 [10]. It is easy to check
that Gaussian, Lorentzian and parabolic ρ(h)’s all have
ρ′′(0) ∼ −R3. Therefore their universal behaviors agree,
as expected. Fig.2(b) shows that for uniform ρ(h), for
both static and dynamic avalanches at different disor-
ders, eight Dint(S,R) curves collapse onto a single one,
with critical exponents: (τ + σβδ) = 2.08 ± 0.02 and
σ = 0.52 ± 0.03. Note that: (1) The critical exponents,
especially σ, are significantly different from those of the
above three kinds of ρ(h)’s. (2) The scaling function
has a significantly different shape from that observed in
Fig.2(a). These two findings are consistent with the RG
analysis mentioned above because for a uniform ρ(h),
ρ′′(0) = 0 is independent of R and is qualitatively dif-
ferent from the other three distributions.
The most surprising result about Fig.2 is that the crit-

ical exponents and scaling functions for static and dy-
namic avalanches match for any ρ(h). This strongly in-
dicates that the equilibrium and non-equilibrium RFIM
behave the same near their corresponding critical points.
To check whether this is just a coincidence, we make

another independent test by studying the avalanche cor-
relation function, which measures the probability that a
distance x between any two flipping spins occurs in the
same avalanche [11]. Near the critical disorder Rc, the
scaling form of the avalanche correlation function inte-
grated over H can be written as

Gint(x,R) ∼
1

xd+β/ν
Ḡ±(x|r|

ν ) (2)
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FIG. 1: An illustration of the algorithm to calculate the equilibrium M -H curve. Calculate the energies E1 and E2 of the two
simplest states C1 = {si = −1} and C2 = {si = +1}, respectively, as a function of H . According to Proposition. 1, C1 (or C2)
would be the ground state for H < −hmax (or H > −hmin). Calculate the crossing field H∗(C1, C2) where E1 = E2. Check
whether there is a GS at H∗ which is different from C1 and C2. If no, the algorithm ends. If yes, denote the GS as C, calculate
the crossing field H∗(C,C1) and H∗(C,C2). At the new crossing fields, check whether there is a GS which is different from the
two intersected states. The algorithm will not end until all the crossing fields have been checked. An example of the calculated
equilibrium M -H curve is shown in Fig. 2.
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FIG. 2: The equilibrium M -H curve (the ground state evo-
lution) for the Gaussian RFIM with D = 3, L = 32 and
R = 2.837. Here R is the standard deviation of the Gaus-
sian random field distribution. The inset shows a detail of
the M(H) curve near H = 0, where magnetization jumps are
clearly seen.

with ∆H = H ′ −H and ∆M = M ′ −M . Define ni (or
n′
i) to be the number of the i-th spin’s nearest neighbors

that point in the same direction as the spin in configu-
ration C (or C′). We call these spins the same-direction
nearest neighbors(SDNN) of the i-th spin. Note that
ni = 0, 1, 2, ...Z with Z = 2D the coordination number
of the D-dimensional hypercubic lattice.

It is easy to get the bond energy change 4J(ni − D).
And the total energy change due to the single spin-flip
and the varying external field is given by

fi(H,∆H) = fi(H)−∆HM ′ (7)

Here we have defined

fi(H) ≡ fi(H, 0) = 4J(ni −D)− (hi +H)∆si (8)

which is the energy change due to spin i flipping for the
configuration C just at the field H , i.e. ∆si = ±2 with
∆H = 0. It is easy to check that

fi,±(H) = fi,±(0)± 2H = ±2heff
i (9)

with ‘±’ represents si = ±1 and ∆si = ∓2 accordingly.
Second, we consider two spin flips. Suppose two differ-

ent spins (si and sj) flip during the evolution of configu-
ration C at H to configuration C′ at H ′. There are two
subcases.
(1) si and sj are not next to each other. The energy

change is

fi,j(H,∆H) = fi(H) + fj(H)−∆HM ′ (10)

(2) si and sj are next to each other. The energy change
is

f⟨i,j⟩(H,∆H) = fi(H)+fj(H)−4J(si·sj)−∆HM ′ (11)

sample 
magnetization

applied source



Direct signature of avalanches
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FIG. 1: Illustration of avalanches and of their consequence
on the functional dependence of a disorder-averaged corre-
lation function in the toy model of the d = 0 RFIM stud-
ied in equilibrium at T = 0 (see main text). (a) Poten-
tial U(') � (J + h)' versus ' for di↵erent values of J , with
U(�) = �(|r|/2)'2 + (u/4!)'4; (b) Ground state configura-
tion 'GS(J + h) associated with (a). (c) Two-point correla-

tion function eG(0;��J, �J)) = �GS(��J + h)�GS(�J + h) �
�GS(��J + h) �GS(�J + h), where the average is over a
Gaussian distributed random field h. Notice the linear cusp
around �J = 0.

uation rarely occurs for states that di↵er on large length
scales, but it has been conjectured that thermally active
(i.e., quasi-degenerate with the ground state) droplets
appear on a large size L with a power-law decaying prob-
ability / TL

�✓, with ✓ the temperature exponent49,67.

As will be illustrated in more detail below, these
avalanches and droplets generate singular functional de-
pendences in the disorder-averaged correlation functions
and 1PI disorder cumulants. However, for avalanches
and droplets to a↵ect the long-distance physics of a d-
dimensional disordered model with d > 0, they must be
of collective origin and occur on all scales (unlike in the
0-dimensional toy model discussed above).

Note finally that avalanches (and droplets) are in gen-
eral harder to characterize in the case of the continuous
O(N) symmetry because of the many directions in which
they can extend, but they are nonetheless present.

B. The need for multiple copies

Whether one study random-field systems in or out of
equilibrium, the central quantities are generating func-
tionals, as, e.g., the equilibrium “free energy” functional
W[J ;h] previously introduced (Sec. II). In the presence
of quenched disorder, such functionals are random, i.e.,
sample dependent. Therefore, they are fully character-
ized by their (functional) probability distribution or, al-
ternatively, by the infinite set of their cumulants (if of
course the cumulants exist). Dealing with cumulants has
the advantage of involving an average over the bare disor-
der: As a result, one recovers the translational and rota-
tional invariances in Euclidean space which are otherwise
broken by the space-dependent random field. We will
thus consider a formalism based on cumulants. However,
a crucial point when working with such disorder-averaged
quantities is that one does not want to lose track of the
rare or singular collective phenomena (avalanches and
droplets) taking place in the system’s samples and dis-
cussed just above.
To illustrate the e↵ect of avalanches and droplets on

disorder-averaged quantities, we consider again the case
of the d = 0 RFIM. Let study first the case of zero
temperature, T = 0. Consider two copies of the sys-
tem with the same disorder h but submitted to di↵erent
sources J1 = J + �J and J2 = J � �J and compute the
correlation function eG(J1, J2) = 'GS(J1;h)'GS(J2;h)�
'GS(J1;h) 'GS(J2;h). This is an extension to general
sources J1 6= J2 of what is called the 2-point “discon-
nected” correlation function [see, e.g., Eq. (7)]. A simple
calculation shows that when �J ! 0 this correlation func-
tion, which is symmetric under the inversion �J ! ��J ,
behaves as

eG(J + �J, J � �J) = eG(J, J)� 24 e�
J2

2�B

u
p
2⇡�B

|�J |+O(�J2),

(10)
i.e., displays a linear cusp in �J = (J1�J2)/2: see Fig. 1
(c). This nonanalytic dependence on the replica sources
is a direct consequence of the avalanches in the ground
state. Through a Legendre transform it translates into
a cusp in the dependence on the average replica fields
of the associated 1-particle irreducible (1PI) correlation
function, which in this case is the second cumulant of the
renormalized random field.
If temperature is nonzero, T > 0, but small, the equi-

librium properties now essentially involves a Boltzmann
average over the two minima, which form a two-level sys-
tem. The nonanalyticity is then rounded,

eG(J + �J, J � �J)� eG(J, J) = Tf(J,
�J

2

T 2
) +O(T 2

, �J
2) ,

(11)
where f(J, y) = f2(J)y + O(y2) when y ! 0 and
f(J, y) ⇠ f1(J)

p
y when y ! 1. As f1(J) =

24 e�J2/(2�B)
/(u

p
2⇡�B), one recovers Eq. (10) when

T ! 0. For T > 0 the cusp is rounded in a region where

• The ground state (GS) jumps discontinuously (possibly  
large avalanches) at a sample-depdt 𝐽h (≈ 0 at criticality) 

• Then, the second cumulant of the magnetization  
and the associated pair correlation function for  
slightly different sources ±𝛿𝐽, has a nonanalytic  

behavior (a “cusp” in √𝛿𝐽2) when 𝛿𝐽 → 0. 

                           
<latexit sha1_base64="TjNXQVmhGZsHn9cO+ejsbpLsD6w="></latexit>

Ld �GS,h(��J)�GS,h(�J) = Ld �GS,h(0)
2 +O(�J2

)

� |�J | 1

2Ld

Z 1

Smin

dSS2⇢L(S) ⌘ eGL(q = 0;��J, �J)

Cusp amplitude = Second moment of the avalanche distribution 
which diverges with the system size L at criticality. 

“avalanche”
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derives that, for instance, the 2-point Green’s function
G̃(q = 0; J1 = J − δJ, J2 = J + δJ) has a nonanalytic
dependence as δJ → 0, with the amplitude of the cusp
related to the second moment of the avalanches:

G̃(0; J − δJ, J + δJ)− G̃(0; J, J) =

− |δJ |
1

Ld

∫ ∞

Smin

dS S2ρ(S, J) +O(δJ2).
(3)

This can be transposed to the associated 1PI vertices and
can generalized to higher orders as well63.

(a)
0
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Γ(φ) − (J + h)φ

φ

(b)

0

φGS

J + h

(b)

(c) 0 δJ

˜G(0;−δJ, δJ)

(c)

FIG. 1: Illustration of avalanches and their conse-
quence on the functional dependence of the Green’s func-
tions in the schematic case of the d = 0 RFIM stud-
ied in equilibrium at T = 0. (a) Free energy Γ(φ) −
(J + h)φ versus φ for different values of J , with Γ(φ) =
−(|τ |/2)φ2 +(g/4!)φ4; (b) Ground state configuration associ-

ated with (a); Two-point Green’s function G̃(0;−δJ, δJ) =
[φGS(−δJ + h)φGS(δJ + h) − φGS(−δJ + h) φGS(δJ + h)],
where the average is over a Gaussian distributed random field
h: notice the linear cusp around δJ = 0.

The above arguments show that avalanches induce a
linear cusp in the functional dependence of the correla-
tion functions describing the cumulants of the effective
or renormalized disorder at T = 0. This is always true
even when the avalanches take place on a restricted scale,
away from any critical conditions (see Fig. 1 for an illus-
tration). However, we are interested in the long-distance
behavior of disordered systems. We therefore study the
situation in which avalanches occur on all scales, as found
for instance in the RFIM at the equilibrium or out-of-
equilibrium critical point, in the rough phase of an elastic

manifold pinned by a random medium or at its depinning
transition, etc.
Consider a d-dimensional system of linear size L at

zero temperature. At large scale, when the correlation
length and the extent of the largest typical avalanches
have reached the system size, one expects that the (nor-
malized) probability density of having an avalanche of
size S (see footnote 5) can be written in the following
scaling form25,26,33,34:

DL(S, J) = S−τ D(
S

SL
, |J − Jc|S

ψ) (4)

where SL ∼ Ldf is the size the largest typical “crit-
ical” avalanches in the finite system64; SL acts as a
cutoff for the scaling function D that decays exponen-
tially for S/SL ! 1. Critical conditions correspond to
J = Jc (for the RFIM at equilibrium one has Jc = 0
due to the Z2 symmetry and for the random manifolds
there is no condition on J as the whole phase is crit-
ical). The avalanche size distribution is normalized so
that

∫∞

Smin
dS DL(S, J) = 1 and the moments of the nor-

malized avalanche size distribution are then defined as
< Sp >L=

∫∞

Smin
dS SpDL(S, J). When 1 < τ < 2,

which is usually found (for instance, the mean-field value
for τ is equal to 3/2 in all models), the normalization
factor is dominated by the small avalanches whereas all
moments with p ≥ 1 are dominated by the largest typical
avalanches and behave as (SL)p+1−τ ∼ L(p+1−τ)df when
L → ∞.
We keep using the language of magnetic systems and

let mL(J ;h) denote the magnetization of a given sample
of linear size L. (Here and below, we explicitly indicate
the dependence on the system size L; this makes the
expressions somewhat clumsy but will be helpful later
on to make the connection with the results of the func-
tional RG.) We are primarily interested in the moments
of the random variable mL(J2;h)−mL(J1;h). The den-
sity of avalanches [see Eq. (1)] is related to the nor-
malized probability density by an overall L and J de-
pendent factor: ρL(S, J) = ρ0,L(J)DL(S, J). As dis-
cussed before in connection to Eq. (1), the first moment
of mL(J2;h) − mL(J1;h) contains a contribution from
the smooth change of the magnetization and one from
the avalanches. The so-called “connected” susceptibility
χc,L(J), which is the standard magnetic susceptibility di-
vided by the temperature in order to have a proper zero-
temperature limit and which is obtained by deriving mL

with respect to J , can then be expressed as

χc,L(J) = χsmooth
c,L (J) +

1

Ld

∫ ∞

Smin

dS S ρL(S, J). (5)

Under critical conditions, χc,L goes as L2−η. By fur-
ther making the natural assumption that the contribu-
tion from the avalanches is of the order or larger than
the smooth one and by using Eqs. (4,5) as well as the
fact that the first moment of the avalanches < S >L is
dominated by large avalanches, one then obtains that

ρ0,L(Jc)L
−d+(2−τ)df ∼ L2−η. (6)

𝐽h



Why functional (in the fields)?
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Wh[J ] = lnZh[J ]

• Effect of avalanches (and low-energy droplet excitations at T>0) can 
be captured in a disorder-averaged description, provided one keeps  
the functional dependence of the cumulants on the sources/fields, 
e.g., for the free-energy functional                                : 

• For instance, the "cusp" shows up in the second derivative of 
second cumulant,                           , when 

• Equivalently, study the 1-PI cumulants associated with the 
effective action: 

• Importantly, effect is already captured in low-order cumulants 
and for uniform source/field configurations. Not true for 
Griffiths phase and exponentially rare large-scale excitations.
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Exact Functional RG for the 1-PI cumulants 

• Evolution of the scale-dependent effective action  Γk, with decreasing 
k is described by an exact (functional) RG equation [Wetterich, 1993]: 

with Γk[{𝜙𝑎}] obtained by coupling copies/replicas of the disordered 

system to distinct sources 𝐽𝑎 and then Legendre transform. 

• From it, hierarchy of exact functional RG equations for the flow of the 
1-PI cumulants:
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Nonperturbative FRG

• Guided by considerations on avalanches, nonperturbative approximation 
scheme = combined truncation of 

✴ Expansion in the number of derivatives of the fields 
(around uniform configurations) 

✴ Expansion in cumulant order. 

• Example of truncation (referred to as DE2): 

• Crucial not to explicitly break underlying Parisi-Sourlas SUSY. 

• Key quantity:
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Cusp in the functional dependence  
and SUSY/DR breakdown

• In dimensionless form (appropriate for a zero-temperature fixed point): 

• Second cumulant of the RF 𝛿k with 

  

• Cusp breaks SUSY and dimensional reduction: Takes place below some dDR.  

• A simple signature in 
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Flow of the dimensionless second 
cumulant 𝛿k in d=4 < dDR

symmetry), the flow equations must be recast in a scaled
form. The fixed point being a zero-temperature one [1,8],
the spatial decay of the correlations [see below Eq. (11)] at
criticality is now characterized by two ‘‘anomalous dimen-
sions’’ ! and !!:

P̂ðrÞ # r$ðd$2þ!Þ; ~PðrÞ # r$ðd$4þ !!Þ; (14)

with ! & !! & 2!, and one has to introduce scaling di-
mensions involving an additional critical exponent [6]. The
resulting equations are generalizations of those shown in
Ref. [6] and are not displayed here. We have solved these
coupled partial differential equations numerically, looking
for the proper (critical) fixed point as a function of dimen-
sion (more details will be given elsewhere). This procedure
is numerically very demanding and requires handling 3
coupled equations for 2 functions of 1 variable (Uk and Zk)
and 1 function of 2 variables ("k).

An important property of the present theory is that if
in the limit "2 ! "1, "kð"1;"2Þ ¼ "k0ð"Þ þ"k2ð"Þ(
ð"1 $"2Þ2 þ ) ) ) with " ¼ ð"1 þ"2Þ=2, then the flow
of "k0ð"Þ coincides with that of Zkð"Þ: This is precisely
the WT relation derived from Eq. (13), and DR exactly
follows. On the other hand, a spontaneous breaking of the
SUSY and of the associated WT identity occurs whenever
"k2ð"Þ diverges and "k has a cusplike singularity in the
form "kð"1;"2Þ ¼ "k0ð"Þ þ "kað"Þj"1 $"2jþ ) ) ) as
"2 ! "1.

We find that the solution without a cusp is stable and that
!ðdÞ ¼ !!ðdÞ ¼ !Isingðd$ 2Þ, in agreement with the DR
prediction, above a critical dimension dDR ’ 5:1. For d <
dDR, we obtain a once unstable ‘‘cuspy’’ fixed point (see
Fig. 1) and DR is broken: The exponents! and !! bifurcate,
with !ðdÞ< !!ðdÞ (see Fig. 2). In d ¼ 3, we find ! ’ 0:57,
!! ’ 1:08, and in d ¼ 4, ! ’ 0:24, !! ’ 0:40: This is in
good agreement with the existing estimates [14,15], which
gives support to the whole scenario (the results are also
1-loop exact near d ¼ 6). In addition, the continuous
variation of ! and !! with d and the existence of a critical
dimension above which !ðdÞ ¼ !!ðdÞ contradict the claim

that the two exponents are always related by a fixed ratio
!!ðdÞ ¼ 2!ðdÞ [16].
In conclusion, the present study provides key pieces for

a complete resolution of the long-standing puzzles associ-
ated with the critical behavior of the RFIM. In doing so, we
have developed tools that may prove useful in other con-
texts where the need to select a unique solution of a
stochastic field equation arises, as in ‘‘glassy’’ systems,
turbulence, or non-Abelian gauge field theories.
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FIG. 1 (color online). NP-FRG flow of the dimensionless
cumulant #kð’þ y; ’$ yÞ in d ¼ 4< dDR for ’ ¼ 0 and for
initial conditions close to the critical point. A linear cusp in jyj
appears at a finite RG ‘‘time’’ jtj ¼ logð#=kÞ.
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FIG. 2 (color online). Anomalous dimensions ! and !! versus
d. DR is observed above dDR ’ 5:1. ! and !! satisfy the required
upper ( !! & 2!) and lower bounds (red dashed lines) [1]. Crosses
correspond to simulation results [14,15]. The region just below
dDR is unfortunately numerically difficult to access.
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𝜕2𝛿k/𝜕2y(y=0) blows up in a finite 
RG time t for d < dDR (red curve), 

not for d > dDR (blue curve)

Solution of the NP-FRG flow equations: 
cusp versus no cusp

Signature in the flow of the second cumulant 𝛿k(𝜑1,𝜑2): 

Cusp in y≡𝛿𝜑=(𝜑1-𝜑2) below dDR ≈ 5.1 versus no cusp above.
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SUSY is broken at a finite IR scale along the RG flow
and a breakdown of dimensional reduction takes place.
By using the procedure (1) detailed in the above subsec-
tion, we have numerically located this critical dimension
as dDR ≃ 5.1 ± 0.1 (the precise value has a residual de-
pendence on the chosen cutoff function). Note that the
value dDR ≃ 5.1 obtained here is consistent with the
value found in our previous, and somewhat cruder, NP-
FRG approach of the RFO(N)M when extrapolating the
transition line dDR(N) down to N = 1 (see Figure 4 of
paper II2).

For initial conditions of the RG flow at or near the criti-
cal point, the second derivative δk,2(ϕ) = ∂2

yδk(ϕ+y,ϕ−
y)|y=0 blows up at a finite RG “time” tL = log(kL/Λ)
for d < dDR, whereas it stays finite up to the fixed point
for d > dDR. We illustrate the difference of behavior
between these two cases in Fig. 1 for a field configura-
tion ϕ = 0. The divergence of the full function δk,2(ϕ)

!2000

!1500

!1000

!500

 0

 0  1  2  3  4  5  6  7

|t|

|tL|

δk,2(0)

FIG. 1: NP-FRG flow of δk,2(0) in the regime where SUSY is
valid. The initial conditions at k = Λ (i.e., t = 0) for u′

k(ρ)
and zk(ρ) = δk,0(ρ), with ρ = ϕ2/2, are taken at the fixed-
point solution, u′

∗(ρ) and z∗(ρ) [∂tu
′
k(ρ)|∗ = ∂tzk(ρ)|∗ = 0],

and those for δk,0(ρ) and δk,2(ρ) are chosen as δk=Λ,0(ρ) =
z∗(ρ) and δk=Λ,2(ρ) = 0. The upper (color online blue) curve
corresponds to d = 5.2 > dDR and one observes that δk,2(0)
tends to a finite fixed-point value. The lower (color online
red) curve corresponds to d = 5 < dDR shows a divergence at
a finite RG “time” tL.

when d < dDR is shown in Fig. 2. (Due to the Z2 sym-
metry, it is more convenient to represent the functions
in terms of ρ = ϕ2/2.) We find, as can be anticipated
from an analysis of the NP-FRG equations for u′

k(ϕ),
δk,0(ϕ) and δk,2(ϕ) that the latter stays finite at d = dDR

and that its fixed-point value for d → d+
DR behaves as

δ∗,2(ϕ)|d − δ∗,2(ϕ)|dDR
∝

√
d − dDR, as seen in Fig. 3.

When considering dimensions smaller than dDR, one
must study the full dependence of the function δk(ρ =
ϕ2/2, y). We show in Fig. 4 the evolution of this function
for ρ = 0. Starting from a constant function, one can
clearly see that a linear cusp in y appears in a finite RG
time |tL|, close to 0.7 for the case shown.

The appearance of a cusp along the flow leads to a
breakdown of the superrotational invariance and of the

 0
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|t|

δk,2(ρ)

FIG. 2: NP-FRG flow of δk,2(ρ) = ∂2
yδ(ρ, y)|y=0 for d = 5 <

dDR. The initial conditions at k = Λ (i.e., t = 0) for u′
k(ρ) and

zk(ρ) are taken at the fixed-point solution, u′
∗(ρ) and z∗(ρ),

and those for δk,0(ρ) and δk,2(ρ) are chosen as δk=Λ,0(ρ) =
z∗(ρ) and δk=Λ,2(ρ) = 0. One observes that the divergence
first takes place for small values of ρ.
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FIG. 3: Fixed-point solution δ∗,2(ρ) for dimensions d > dDR.
Note the square-root behavior

√
d − dDR as a function of di-

mension.

associated WT identities. This is shown for the fixed
point in d = 3 in Fig 5: there, z∗(ρ) ̸= δ∗,0(ρ) ≡ δ∗(ρ, 0),
which implies a breaking of the WT identity in Eq. (27).
The different asymptotic behaviors at large ρ are eas-
ily deduced from Eqs. (34,35), from which we show that
z∗(ρ) ∼ ρ−η/(d−4+η̄) and δ∗(ρ, 0) ∼ ρ−(2η−η̄)/(d−4+η̄). In
d = 3, 2η − η̄ is very small, which implies that the func-
tion δ∗(ρ, 0) decreases slowly to 0.

We also display in Figs. 6-7 the fixed-point solutions
u′
∗(ρ) and z∗(ρ) for different dimensions. One can see

that the lower the dimension the steeper the curves. This
means that for a numerical study of the critical proper-
ties in low dimensions, we need to discretize the field de-
pendence in the NP-FRG equations with a small mesh,
which entails a large number of points. The numerical
integration is therefore more difficult and even becomes
intractable in practice. Finally, we show in Fig. 8 the full
dependence of the fixed-point solution δ∗(ρ, y).

We now turn to the results concerning the critical ex-
ponents. We begin with the anomalous dimensions η
and η̄ which are determined at the (critical) fixed point.
Their dependence on the spatial dimension d is shown in

d=5.2 
> dDR

d=5.0 
< dDR



• Below dDR, nonanalytic (zero-temperature) fixed-point 
effective action 

• Unconventional pattern of disappearance/appearance of 
fixed points around dDR: requires a functional description!

Phase diagram of the 
equilibrium RFO(N)M 

N=1 → RFIM
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Oddities of the resulting fixed-point theories

No phase transition

RFIM
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dDR ⇡ 5.11± 0.09

dDR(N)

Transition between different types of critical behavior at  
a nontrivial critical dimension dDR



Oddities and need for a functional description
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Anomalous field dimensions are continuous Eigenvalue of the cuspy perturbation is discontinuous
Fixed points and their stability in the functional renormalization group of random field models
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that is conjugate to the above critical one: it is characterized by the same u′*(ϕ) and 
z*(ϕ) = δ*,0 (ϕ) but corresponds to another solution δ*,2 (ϕ) of equation (37). The eigen-
value associated with a cuspy perturbation around this fixed point is plotted in the 
bottom panel of figure 9 and it merges with that for the other fixed point for d = dDR. 
The cuspy eigenvalues for both cuspless fixed points have a square root behavior, as 
shown in the figure. We can fit these curves by a parabola, d(λ) = 5.1503 − 0.0199λ 
+ 0.8279λ2. We observe that λ(dDR) is slightly positive, as already mentioned and that 
a cuspy perturbation around the unstable cuspless fixed point is marginal in a dimension 
slightly larger than dDR. From the results of the preceding sections, this indicates that, 
in the case of the short-range RFIM, the breaking of dimensional reduction is associ-
ated with the appearance of a cuspy fixed point through a boundary layer. However, 
since λ(dDR) is very small, we expect that the unusual features that signals the presence 
of a boundary-layer mechanism (in particular the discontinuity of the coefficient δ*,2(ϕ) 
of the term in y2/2 of the small y expansion of δ*(ϕ, y)) to be almost unobservable.

Figure 9. Short-range RFIM within the NP-FRG. Top figure: variation with d of 
the eigenvalue λ associated with a cuspy perturbation around the stable cuspless 
fixed points when d ≤ dDR ≃ 5.1. The dots (red) are obtained from the NP-FRG flow 
equations. The (blue) curve is a fit described in the text. At the dimension dDR, the 
eigenvalue is small but strictly positive. Bottom figure: eigenvalue λ of the cuspy 
perturbation around the stable cuspless fixed point (red points) and the unstable 
cuspless fixed point (green crosses). The black stars correspond to the exact values 
(−1 and +1) obtained in d = 6.
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• In dDR, coalescence of two cuspless fixed points and emergence of a 
cuspy fixed point below dDR thru a boundary-layer mechanism: 

• Cannot be pictured in a simple diagram with few coupling constants. 
Some quantities and exponents are continuous, some are 
discontinuous as a function of d.

<latexit sha1_base64="SXQWS2toZ/kfwdLCQ00Ytc0wI8E="></latexit>

d ! d�DR : �(', �') = �0(') + (dDR � d)µ f(',
|�'|

(dDR � d)µ/2
) + · · ·



Anomalous increase of the correction-to-
scaling exponent below dDR ≈ 5.1

15

[Balog, G.T., Tissier, PRE, 2020]

ar
X

iv
:1

90
6.

10
05

8v
2 

 [c
on

d-
m

at
.d

is-
nn

]  
2 

O
ct

 2
01

9

Comment on “Evidence for Supersymmetry in the Random-Field Ising Model at
D = 5”
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bôıte 121, 4 Pl. Jussieu, 75252 Paris cedex 05, France

(Dated: October 4, 2019)

PACS numbers: 11.10.Hi, 75.40.Cx

In a recent letter,1 Fytas et al. study the critical point
of the equilibrium random-field Ising model (RFIM) in
D = 5 by means of state-of-art T = 0 lattice simulations.
They show that the underlying supersymmetry (SUSY)
of the model,2 which is clearly broken in D = 4 and
D = 3, is satisfied to a numerical accuracy of approxi-
mately 1% in D = 5. This result, which complements
an earlier simulation study by the same authors3 on
an approximate restoration of the dimensional-reduction
(DR) property of the critical scaling in D = 5, restricts
the number of scenarios describing the critical behavior
of the RFIM as D is decreased below the upper crit-
ical dimension of 6. Of the two scenarios compatible
with their findings, Fytas et al. suggest that the less
likely is the one that we have put forward based on a
nonperturbative functional renormalization group (NP-
FRG) theory:4–7 SUSY and DR apply above a critical
dimension DDR ≈ 5.1 and break down below due to the
relevance of collective phenomena known as avalanches
(or shocks) that induce singularities (cusps) in the func-
tional dependence of the cumulants of the renormalized
random field at the fixed point.8 We disagree with the
conclusions of Fytas et al. on two key points: 1) our sce-
nario does not imply that the correction-to-scaling expo-
nent ω should be small and scale as ω ∼ DDR−D ≈ 0.1 in
D = 5 but is instead perfectly compatible with the large
value ω = 0.66(+15/− 13) found numerically1,3 and 2)
a 1% accuracy is not sufficient to claim that SUSY is re-
stored in 5D. We substantiate our two comments below.

1) The functional character of the NP-FRG previously
allowed us to unravel the peculiar way by which the new
fixed point where both SUSY and DR are broken emerges
from the collapse of two SUSY-DR fixed points (one sta-
ble and one unstable) in D = DDR.7 This emergence
takes place through a boundary-layer mechanism that
leads to a discontinuity in the lowest irrelevant eigen-
value exactly in dDR and to a rapid increase of ω below
DDR, in the form of a square-root singularity. It allows
one to escape the curse of a small correction-to-scaling
exponent in D = 5: We indeed find from the solution of
the NP-FRG equations (derived and discussed in Refs.
[6,7]) in D = 5 a value ω ≈ 0.65 that is fully compat-
ible with the numerical result of Fytas et al..1,3 (The
other exponents are found to be η ≈ 0.044, η̄ ≈ 0.048,
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FIG. 1: Lowest irrelevant eigenvalue of the stability matrix of
the RFIM fixed point numerically obtained from our NP-FRG
approach in the vicinity of the critical dimension DDR ≈ 5.13.
This eigenvalue is discontinuous in DDR and has square-root
singularities on approaching DDR from both sides. (As the
numerical resolution of the functional RG equations is done
by discretizing the field arguments on a grid,6,7 it is very
difficult to properly approach DDR from below and the curve
there is just a guide for the eye.) Inset: Test of a SUSY Ward
identity at the NP-FRG fixed point in D = 5: SUSY implies
that the second cumulant of the renormalized random field
δ∗(ϕ,ϕ) is equal to the field renormalization function z∗(ϕ).

6

The observed violation is by less than 1%, as found for a
related Ward identity in [1].

ν ≈ 0.627, in good agreement with the simulation re-
sults, 0.052, 0.058, 0.626,1,3 respectively.) We display
in Fig. 1 the D dependence of the smallest irrelevant
eigenvalue around the fixed point in the vicinity of DDR.
This eigenvalue is equal to ω below DDR (whereas, due
to the “cuspy” functional nature of the associated eigen-
function, it is not observable in the correction to scaling
of usual observables above DDR).

2) We show in the inset of Fig. 1 the very small but
nonzero violation of the SUSY Ward identity displayed
by NP-FRG fixed-point functions in D = 5, which is
always smaller than 1% (and can be even smaller in other
observables) as a result of the proximity of DDR.

Computer simulation in d=5
[Fytas et al., PRL, 2019]

As a result of the boundary-layer mechanism, anomalous 
square-root behavior: 

NP-FRG result for the lowest irrelevant eigenvalue  
(correction to scaling) 𝝀 near dDR

dDR
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• Perturbative RG description of destabilization of the SUSY/DR 
fixed point by irrelevant operators in d=6 that become less so 
as 𝜖=6-d increases. [Rychkov, Trevisani et al., 2021-2024]
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Slava Rychkov and collaborators find new 
results on the Random Field Ising Model

Press release – 8 September 2022

Slava Rychkov stumbled upon the many questions posed by the Parisi-Sourlas conjecture shortly 
after his arrival at IHES, at the end of 2017. He was participating in a conference on Disordered 
Systems organized by physicist Giorgio Parisi, a professor at Sapienza University of Rome, and the 
Cracking the Glass Simons Collaboration, where he had been invited because of his recent work on 
conformal bootstrap.

The Random Field Ising Model

Real systems are inherently disordered. Even the purest of crystalline solids has defects, that appear 
at random positions in the crystal and impact its properties at the macroscopic scale. To understand 
the role that disorder might play, physicists introduce small extra terms of disorder in a well-known 
model. Having been studied for more than a century, the Ising model is one of the best-known 
models in statistical physics, which makes it a good candidate. One of the simplest ways to 
introduce disorder in the Ising model is to add a random but constant magnetic field to each lattice 
site. The model that one obtains in so doing is called Random Field Ising Model (RFIM) which, 
despite its apparent simplicity, already poses a challenge.

To determine the role of the extra term, physicists set out to study how solutions to the RFIM might 
differ from the ones of the pure Ising model, particularly around the critical point. Does disorder 
change the universality class of the system? Or do universal quantities such as the critical exponents 
remain the same upon introduction of a random magnetic field?

Answering these questions could help to understand for example how the physical properties of 
certain materials might be affected by their inherent disorder.

When physicists started studying the RFIM in the 1970s they could quickly realize that the extra 
random feature introduces important differences in the critical behavior: while the classical Ising 
model is notoriously interesting in dimensions 1<d<4, d=1 being the lower critical dimension, at 
which no phase transition is observed, and d=4 being the upper critical dimension at which mean-
field solutions become exact, in the RFIM the interesting dimensional range is 2<d<6. This is per se 
enough to significantly complicate the study in the disordered case, as an increase in the upper 
critical dimension implies that widespread perturbative renormalization group methods consisting in 
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Slava Rychkov and his collaborators solved a 40-year-old problem  
posed by the Parisi-Sourlas conjecture 

 
 
 

Slava Rychkov and his collaborators, Apratim Kaviraj and Emilio Trevisani, have recently published a series of four 
articles that answer a question which has puzzled physicists for more than four decades. They are thus finally 
shedding light on the role played by disorder in some fundamental models in statistical physics, such as the 
Random Field Ising Model and the branched polymers model. 
 
Real systems are inherently disordered. Even in the purest of crystalline solids, defects consisting of irregularities 
and impurities appearing at random positions impact the properties of the material in ways that we have not yet 
fully understood. To investigate the role that disorder might play in real systems, physicists add small extra terms 
of disorder to well-known models, and study how their behavior is affected.  
 
One of the best-known models in statistical physics is the Ising model. The Random Field Ising Model (RFIM) is 
obtained by adding a magnetic field with random intensity and direction but constant in time to each lattice site 
in the pure Ising model, and despite having been considered one of the simplest ways to account for disorder, its 
understanding has posed many challenges. 
 
The question that Rychkov, Kaviraj and Trevisani set out to solve concerns the Parisi-Sourlas conjecture, which 
physicists Giorgio Parisi, a professor at Sapienza University of Rome, and Nicolas Sourlas, a colleague of Slava 
Rychkov at École normale supérieure, formulated in the late 1970s to relate the RFIM to the pure Ising model.  
 
By arguing that the fixed points in a disordered system are characterized by supersymmetric properties, Parisi and 
Sourlas were able to show that something called “dimensional reduction” occurred: the critical exponents for the 
disordered case in dimension d were the same as the ones of its pure (i.e. non-disordered) correspondent in d-2.  
 
Despite being able to explain a series of exact and numerical results obtained on this model, the conjecture 
showed at least as many limitations, as some of its implications, such as for example the absence of a phase 
transition for the RFIM in d=3, are clearly not true. 
 
Slava Rychkov became very interested in this problem in 2017, at a conference on Disordered Systems organized 
at La Sapienza University in Rome. At that time, the spin-glass community had been stuck for decades in an attempt 
to understand the conjecture.  
 
Fascinated by the long-lasting debate spurred by the Parisi-Sourlas conjecture, Prof. Rychkov promptly teamed up 
with Apratim Kaviraj and Emilio Trevisani, who at the time were both working as postdocs at École normale 
supérieure in Paris. After more than four years of hard work and sophisticated calculations, they have recently 
published four papers that promise to give an answer to this four-decade-old conundrum.  
 
They divided the problem into several smaller ones, which they solved separately. In a first paper posted in 
December 2019, they used conformal bootstrap methods to prove that the existence of supersymmetric fixed 
points implies dimensional reduction [1].  
 
The idea to solving the second part of the problem was provided by an article published in 1985 by physicist John 
Cardy, currently professor emeritus at the University of Oxford and professor at the University of California, 
Berkeley. In the paper, Cardy obtains supersymmetry and dimensional reduction for the RFIM by neglecting terms 
irrelevant at high dimension. In a second article [2], through a series of complex and subtle calculations, Rychkov 
and collaborators identified two perturbations that could not be neglected below a certain dimension dc ≈ 4.5, 
thus invalidating the Parisi-Sourlas hypothesis that the fixed points in the RFIM are characterized by 
supersymmetric properties at d<dc. In a third paper [3] Kaviraj and Trevisani extended their reasoning to the case 
of branched polymers and were able to explain why the conjecture seems to hold in all dimensions for this class 
of systems. A fourth paper [4] by Rychkov, Kaviraj and Trevisani summarizes their results and offers a greater 
picture. 
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• Already in FRG description:
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of the singlets F4 and F6, see Section 3.7. Their scaling dimensions are given by:

�(F4)L = (8� 2")class �
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"2 + . . . ,

�(F6)L = (12� 3")class �
7

9
"2 + . . . , (3.53)

where we show separately the classical dimension and the anomalous one, arising at order "2

(there is no order-" anomalous contribution).

In Fig. 6 we plot the results (3.53) neglecting the unknown higher order terms. There we

see that both these scaling dimensions crossed marginality line � = d for d between 4 and 5:

�(F4)L = d at d = dc1 ⇡ 4.6,

�(F6)L = d at d = dc2 ⇡ 4.2. (3.54)

We may estimate the e↵ect of the unknown higher order terms in (3.53) by using Padé-
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Figure 6: Scaling dimensions (3.53) plotted as a function of d = 6� ".

resummed versions of the same equations. Let us use Padé[1,1], which means that we look

for rational functions (a0 + a1")/(b0 + b1") whose expansions coincide to O("2) with (3.53).

Proceeding this way, we find that �(F4)L crosses marginality at dc1 ⇡ 4.7, while �(F6)L at

dc2 ⇡ 4.5 (Exercise). That these numbers do not di↵er too much from (3.54) gives us hope

that the conclusion is robust - (F4)L and (F6)L do become relevant somewhere between d = 4

and 5. This will destabilize the SUSY fixed point, leading to the loss of SUSY and with it to

the loss of dimensional reduction.

Possible tests, predictions, and open problems will be discussed in the next lecture.

the ordinary '4 model in d = 4� " dimensions, most operators get positive anomalous dimensions. Negative

anomalous dimensions in our model may be related to the lack of unitarity.

– 40 –

SUSY/DR 
FP unstable

2-loop calcul.
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FIG. 1: Eigenvalue ⇤2(d) corresponding to the most dan-
gerous analytic perturbations around the SUSY/DR fixed
point in the RFIM and associated with Feldman’s operator
F4. Dashed line: 2-loop calculation in d = 6 � ✏, together
with a plausible extrapolation (the result coincide with that
of KRT1,2); full lines: Results of successive levels of the non-
perturbative approximation scheme of the FRG (LPA’, LPA”,
DE2, and DE4), which are discussed in Secs. IVC, V and
Appendix E (full lines). Below dDR ⇡ 5.11 ± 0.09 at which
⇤2 = 0 the SUSY/DR fixed point disappears and gives way
to a cuspy fixed point at which both SUSY and DR are bro-
ken. Note that this disappearance which is associated with a
square-root singularity in ⇤2(d) is out of reach of the extrap-
olated perturbative expansion in ✏ which only suggests that
the eigenvalue becomes negative (relevant) below d ⇡ 4.6.

In the case of the RFIM this relies on the combined trun-
cation of the expansions of the e↵ective action in number
of field derivatives and order of the cumulants. (A pertur-
bative approximation scheme can of course also be used
through an expansion in the �4 coupling constant of the
first cumulant, which is marginal at the upper dimension
d = 6, and a subsequent expansion in ✏ = 6�d.) Contrary
to the perturbative treatment in the coupling constant,
the nonperturbative scheme provides an account of the
functional dependence of the 1-PI cumulants in their field
arguments. The truncation is chosen such that it does
not explicitly break the symmetries and the SUSY of the
theory and that the 1-loop perturbative results are recov-
ered in the vicinity of d = 6 (and, for the RFO(N > 2)M,
in the vicinity of the lower critical dimension of ferromag-
netism, d = 4).

It should be stressed that all operators considered in
the approach of KRT [1,2] are included in the FRG de-
scription, whether the latter makes use of conventional
fields,24,25 superfields,18,19,26 or is derived within the dy-
namical formalism47,52. They are obtained by Taylor ex-
panding the functional dependence of the 1-PI cumulants
of the renormalized random field (a more detailed discus-
sion is provided in Apendix C). This can be directly seen
for Feldman’s operators that appear in the polynomial
expansion of the second 1-PI cumulant in the di↵erence

between the two field arguments, (�a � �b) [see Eq. (2)].
In particular, F4, which is the most dangerous pertur-
bation that may destabilize the SUSY/DR fixed point
and which is a SUSY-nul operator in the formalism of
Refs. [1,2] already played a key role in our FRG treat-
ment because it signals that a cuspless, hence SUSY/DR,
fixed point can no longer exist. We called the critical spa-
tial dimension at which this happens dDR and found it to
be about 5.1. (A check of the robustness of the predic-
tion with an estimate of the error bar is provided below
in Sec. V.)

A crucial point is that the nonperturbative FRG is able
to show the disappearance of the SUSY/DR fixed point
altogether when the most dangerous analytic pertur-
bation associated with Feldman’s operator F4 becomes
marginal, i.e., when ⇤2 = 0. The reason is that the non-
perturbative FRG in fixed dimension d < 6 provides a full
characterization of the e↵ective action at the SUSY/DR
fixed point and of the spectrum of eigenvalues (or equiv-
alently of scaling dimensions) around this fixed point.
Whereas the latter is determined from the linearization
of the RG flow equations, the former is obtained via the
resolution of fixed-point equations that may be nonlinear
in some coupling constants (or rather functions). This
should be contrasted with the conventional perturbative
RG in which the only nonlinearity concerns the coupling
constant that is marginal in d = 6.53 Then, both the
eigenvalues and the characteristics of the fixed-point ef-
fective action are derived as expansions in powers of this
coupling constant (eventually turned into an expansion in
✏ = 6�d). If the fixed point disappears in a given dimen-
sion dDR < 6 because the (nonlinear) equation describing
a specific coupling constant/function of the fixed-point
e↵ective action, in the present case that associated with
the operator F4 which is irrelevant in d = 6, has no more
solution due to the collapse with another fixed point, the
perturbative approach followed in [1,2] is intrinsically un-
able to capture the phenomenon.

We illustrate the outcome of the two frameworks, non-
perturbative FRG and conventional perturbative RG, for
the eigenvalue ⇤2(d) associated with the most danger-
ous perturbation for the SUSY/DR fixed point in Fig. 1.
The perturbative calculation of KRT up to 2-loop order,
which in the present case is also reproduced within the
FRG (see below) and was already obtained by Feldman,50

predicts a curve as a function of ✏ or d that when extrap-
olated to lower dimension passes through 0 in d ⇡ 4.6
and then becomes negative. On the other hand, the non-
perturbative FRG result coincides with the pertubative
curve near d = 6 but strongly deviates from it as d de-
creases and go to 0 in dDR = 5.11 ± 0.09 (depending on
the level of the nonperturbative approximation scheme:
see Sec. V) with a singular square-root behavior. Below
dDR the SUSY/DR fixed point no longer exists. The ex-
trapolation of the perturbative result is of course blind
to this feature. As we will also show in the next section,
a similar phenomenon takes place in the RFO(N > 2)M
where an expansion in 1/N is structurally unable to de-
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FIG. 6: Determination of the critical dimension dDR in the
RFIM from the vanishing of the eigenvalue ⇤2(d) associated
with the operator F4 for the successive nonperturbative FRG
approximations LPA’, LPA”, DE2, and DE4. The (positive)
eigenvalue ⇤2(d) vanishes as a square-root and collapses with
the (negative) eigenvalue ⇤0

2(d) associated with an unstable
SUSY/DR fixed point. Below dDR, there are no SUSY/DR
fixed points. Note that as shown in Fig. 1 all the curves for ⇤2

converge to the same value with the same slope when d ! 6.

results are displayed in Fig. 6. This allows us to extract
the value of dDR. We find dDR ⇡ 5.2005 for the lowest
order approximation LPA’, dDR ⇡ 5.0180 for the LPA”,
and dDR ⇡ 5.0678 for the highest order DE4.

For the previously studied DE2 level of the approxima-
tion scheme,10 we obtain dDR ⇡ 5.1307 through the same
procedure. We can therefore conclude that the results
are robust with respect to the order of approximation.
We are also able to provide an estimate of dDR with, for
the first time, an error bar accounting for the 4 levels of
approximation:

dDR ⇡ 5.11 ± 0.09. (40)

In addition, it should be noted that the values obtained
by increasing the order of the approximation scheme ap-
pear to oscillate around 5.11. Finally, polynomial fits us-
ing 2-loop perturbative results and a postulated square-
root behavior give dDR ⇡ 5.03� 5.06,39 which is again in
the above predicted range.

Note that the above values obtained for dDR at the
di↵erent levels of the nonperturbative approximation
scheme are determined with a high precision (at least 5
digits) as the location where the eigenvalue ⇤2 vanishes:
see Fig. 6. On the other hand, the solution of the FRG
equations at each level of approximation depends on the
precise form of the (dimensionless) regulator functions
that are introduced to implement the IR cuto↵ on the
functional RG flows: see Sec. IVC and Refs. [59,60]. In
all our calculations we have used an exponential regula-
tor with a prefactor that is optimized in a dimension near
but strictly above dDR (separately at each approximation
level) according to the principle of minimum sensitivity.60

From the detailed work of [64] we expect that the e↵ect
of the regulator at each approximation level is within the
global error bar obtained from comparing di↵erent levels
[given in Eq. (40)].

VI. CONCLUSION

By first revisiting the perturbative FRG results for the
RFO(N)M in d = 4+✏ and then carrying out a more com-
prehensive investigation of the nonperturbative approxi-
mation scheme to the FRG of the RFIM, we have shown
that the perturbative results recently derived by KRT,1,2

which essentially involve a comprehensive and more rig-
orous development of Feldman’s ideas50 recast within
Cardy’s parametrization of the RFIM field t heory,16 are
already included in our 20 year old FRG description of
the breakdown of SUSY and dimensional reduction (DR)
in random-field systems.12,24

There are however two main di↵erences which illus-
trate the power of the nonperturbative FRG. First, the
latter is able to describe what happens when SUSY
and DR are broken. It indeed predicts a non-SUSY
fixed point at which the cumulants of the renormalized
random field display a nonalytical (“cuspy”) dependence
on their field arguments and provides a physical picture
emphasizing the role of scale-free collective phenomena
that appear in the form of avalanches (at zero tem-
perature) and droplets (at nonzero temperature) at
criticality. All of this is well supported by state-of-the-
art computer simulations. Second, the nonperturbative
calculations show that in the critical dimension where
the eigenvalue associated with the (Feldman) oper-
ator which for most dangerous for destabilizing the
SUSY/DR fixed point vanishes, there is an annihilation
of fixed points that leads to the disappearance of the
SUSY/DR fixed point below this dimension. This
disappearance stems from the nonlinear nature of the
associated fixed-point equation and cannot be captured
through the perturbative RG and the ✏ = 6�d expansion.

As the critical change of behavior is predicted to take
place near dDR ⇡ 5.1, what are the observable conse-
quences of the di↵erent scenarios beyond a general com-
patibility with the main critical behavior obtained in sim-
ulation results in d = 4, 5, 6?
Within the FRG approach of the RFIM we predict

scale-free avalanches to be present but to have a sub-
dominant e↵ect for d � dDR and to be central to the
critical behavior for d < dDR. The physical argu-
ment relies on the fractal dimension df of the largest
system-spanning avalanches at criticality (in a large but
finite system) and the scaling dimension of the sponta-
neous magnetization (times the volume of the system),
i.e., d � (d � 4 + ⌘̄)/2 = (d + 4 � ⌘̄)/2.28 Our predic-
tion, which is substantiated by the nonperturbative FRG
calculations,10,27,28,47 is that (d + 4 � ⌘̄)/2 � df = 0
when d < dDR and (d + 4 � ⌘̄)/2 � df > 0, which ex-

LPA’’ DE4 DE2  LPA’

2-loop perturb.
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⇤2 = �F4 � d

• Perturbative RG is intrinsically unable to capture the disappearance 
of the SUSY/DR cuspless fixed point at dDR. Focus on eigenvalue 𝛬2 

(associated with  𝛿2 and the most dangerous operator F4) above dDR 

• Check robustness of NP-FRG results by study of successive 
approximation orders => Rapid apparent convergence (from LPA’ to 
LPA’’ to DE2 to DE4):                                  [G.T., Tissier, Balog, 2024]
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dDR ⇡ 5.11± 0.09

dDR ≈ 5.11 ± 0.09



• Many collective phenomena in disordered systems require a 
functional RG (functional in the order-parameter fields).  
➡ For random-field, random-manifold and alike models, solution 

can be obtained through a combined truncation of the cumulants 
series and the derivative expansion. 

• Resulting zero-temperature fixed-point theories are unusual (e.g., 
nonanalyticities in the functional dependence of the 1-PI cumulants).  
➡ In random-field models disappearance of the SUSY/dim.-red. fixed 

point and emergence of a “cuspy” fixed point is highly 
unconventional and can only be described via a functional and 
nonperturbative RG. 

• Exponentially rare events and Griffiths phenomena: Functional but 
whole distributions?

Conclusion


