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The ideas of information geometry

[Ronald A. Fisher, Calyampudi R. Rao, Shun’ich Amari, Nikolai N. Chentsov, …]

studies spaces of probability distributions p(x, ξ) with parameters ξα

Fisher information metric (symmetric, positive semi-definite)

Gαβ(ξ) =

∫
dx p(x, ξ)

(
∂

∂ξα
ln p(x, ξ)

)(
∂

∂ξβ
ln p(x, ξ)

)

unique Riemannian metric that is invariant under sufficient statistics
[Chentsov 1972]

higher geometric structure: pair of dual connections, non-metricity etc.
[Amari, Chentsov, …]

extension to quantum states ρ(ξ)

geometric structure follows from a divergence or relative entropy

D(p‖q) =
∫

dx p(x) ln(p(x)/q(x))
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Sufficient statistics and Chentsov’s theorem
start from random variable x with probability distribution p(x, ξ) where ξα

are parameters
consider map to new random variable x → y = f (x) with probability
distribution q(y, ξ)
information about ξα could get lost in the map
new random variable y is called sufficient statistic for ξ when no
information about ξ is lost:

p(x, ξ) = p(x|y, ξ)q(y, ξ) = r(x)q(y, ξ) factorizes

or
p(x|y, ξ) = p(x, ξ)

q(y, ξ) = r(x) independent of ξα

Chentsov’s theorem: unique invariant metric for sufficient statistic is

Gαβ(ξ) =

∫
dx p(x, ξ)

(
∂

∂ξα
ln p(x, ξ)

)(
∂

∂ξβ
ln p(x, ξ)

)
=

∫
dy q(y, ξ)

(
∂

∂ξα
ln q(y, ξ)

)(
∂

∂ξβ
ln q(y, ξ)

)
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Relative entropy

classical relative entropy or Kullback-Leibler divergence

D(p‖q) =
∑

j

pj ln(pj/qj)

not symmetric distance measure, but a divergence

D(p‖q) ≥ 0 and D(p‖q) = 0 ⇔ p = q

quantum relative entropy of two density matrices (also a divergence)

D(ρ‖σ) = Tr {ρ (ln ρ− lnσ)}

signals how well state ρ can be distinguished from a model σ
Gibbs inequality: D(ρ‖σ) ≥ 0
D(ρ‖σ) = 0 if and only if ρ = σ
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Significance of Kullback-Leibler divergence

Uncertainty deficit
true distribution pj and model distribution qj

uncertainty deficit is expected surprise 〈− ln qj〉 = −
∑

j pj ln qj minus real
information content −

∑
j pj ln pj

D(p‖q) = −
∑

j

pj ln qj −

(
−
∑

j

pj ln pj

)

Asymptotic frequencies
true distribution qj and frequency after N drawings pj =

N(xj)
N

probability to find frequencies pj for large N (similar: Sanov theorem)

∼ e−ND(p‖q)

probability for fluctuation around expectation value 〈pj〉 = qj tends to zero
for large N and when divergence D(p‖q) is large
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Advantages of relative entropy: continuum limit

consider transition from discrete to continuous distributions

pj → f (x)dx qj → g(x)dx

not well defined for entropy

S = −
∑

pj ln pj
 → −

∫
dx f (x) [ln f (x) + ln dx]

relative entropy remains well defined

D(p‖q) → D(f ‖g) =
∫

dx f (x) ln(f (x)/g(x))
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Information geometry for Euclidean quantum fields

[S. Floerchinger, 2303.04081 and Phys. Lett B 846, 138244 (2023)]

classical statistical field theories
bosonic quantum fields with real action in Euclidean space
extension of information geometry
new flow equation for divergence functional
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Probabilities for Euclidean fields: exponential family

probability density for Euclidean field theory with respect to measure Dχ

p[χ, J ] = exp (−I [χ] + Jαφα[χ]− W [J ])

uses abstract index notation

Jαφα =

∫
x

∑
n

Jn(x)φn(x)

partition function

eW [J] =

∫
Dχ exp (−I [χ] + Jαφα[χ])

sources Jα could also compromise coupling constants
will be considered as coordinates on space of probability distributions
known as exponential family in information geometry
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Affine geometry for sources

exponential family is closed with respect to affine transformations

Jα → J ′α = Mα
βJβ + cα

affine transformations respect convexity of W [J ]
so-called e-geodesics

Jα(t) = (1 − t)J ′α + tJ ′′α

characterized by differential equation

d2

dt2 Jα(t) + (ΓE)
α

β γ [J ]
(

d
dt Jβ(t)

)(
d
dt Jγ(t)

)
= 0

where the connection vanishes in terms of source coordinates

(ΓE)
α

β γ [J ] = 0
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Fisher information metric

Fisher information metric

Gαβ [J ] =
∫

Dχ p[χ, J ] δ

δJα
ln p[χ, J ] δ

δJβ
ln p[χ, J ]

=−
∫

Dχ p[χ, J ] δ2

δJαδJβ
ln p[χ, J ]

Fisher-Rao distance between nearby probability distributions

ds2 = Gαβ [J ]dJαdJβ

for the exponential family

Gαβ [J ] =
δ2

δJαδJβ
W [J ] = 〈φα[χ]φβ [χ]〉 − 〈φα[χ]〉〈φβ [χ]〉

equal to connected two-point correlation function !
generalization of Zamolodchikov metric for conformal field theories
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Expectation value coordinates
can also use field expectation values as coordinates for p[χ,Φ]

Φα = 〈φα[χ]〉 =
δ

δJα
W [J ] =

∫
Dχ p[χ, J ]φα[χ]

best described in terms of quantum effective action

Γ[Φ] = sup
J

(JαΦα − W [J ]) = − inf
J

(
−
∫

Dχ p[χ, J ] ln p[χ, J ]
)

Fisher-Rao distance

ds2 = Gαβ [J ] δJαδJβ = Gαβ [Φ] δΦαδΦβ = δJαδΦβ

Fisher metric in expectation value coordinates

Gαβ [Φ] = −
∫

Dχ p[χ,Φ] δ2

δΦαδΦβ
ln p[χ,Φ] = δ2Γ[Φ]

δΦαδΦβ

another affine structure, dual to the one for sources

Φα → Φ′
α = N β

α Φβ + dα

defines so-called m-connection
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Divergence functional in source coordinates
functional generalization of Kullback-Leibler divergence

D[J‖J ′] =

∫
Dχ p[χ, J ] ln

(
p[χ, J ]/p[χ, J ′]

)
compares two probability distributions in asymmetric way
non-negative

D[J‖J ′] ≥ 0

equals Fisher-Rao distance for close-by distributions

D[J‖J ′] =
1
2Gαβ [J ]δJαδJβ + . . .

characterizes probabilities for large deviations (Sanovs theorem)
can be written as Bregman divergence

D[J‖J ′] = (Jα − J ′α)
δW [J ]
δJα

− W [J ] + W [J ′]

functional derivatives w.r.t. second argument yield connected correlation
functions !
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Divergence functional in expectation value coordinates

Divergence functional in terms of expectation values

D[Φ‖Φ′] =

∫
Dχ p[χ,Φ] ln

(
p[χ,Φ]/p[χ,Φ′]

)
=Γ[Φ]− Γ[Φ′]− δΓ[Φ′]

δΦ′
λ

(Φλ − Φ′
λ)

functional derivatives w.r.t. first argument yield one-particle irreducible
correlation functions (for n ≥ 2)

D(n,0)[Φ‖Φ′] = Γ(n)[Φ],

mixed representation generates connected and 1-P.I. correlation functions

D[Φ‖J ′] = Γ[Φ] + W [J ′]− J ′αΦα
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Functional integral representations

divergence functional in source coordinates

e−D[J‖J′] =
eW [J]−JαΦα

eW [J′]−J′αΦα
=

∫
Dχ exp (−I [χ] + Jα(φα[χ]− Φα))∫
Dχ̃ exp (−I [χ̃] + J ′α(φα[χ̃]− Φα))

well defined as ratio of functional integrals
similar in expectation value coordinates
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Geometry from divergence

Fisher metric from functional derivative of divergence

Gαβ [J ] = − δ2

δJαδJ ′β D[J‖J ′]
∣∣
J=J′

transforms automatically as a metric under coordinate changes J → K [J ]
m-connection symbols

(ΓM)αβγ [J ] = − δ2

δJαδJγ

δ

δJ ′β D[J‖J ′]
∣∣
J=J′ .

e-connection symbols

(ΓE)αβγ [J ] = − δ

δJβ

δ2

δJ ′αδJ ′β D[J‖J ′]
∣∣
J=J′

automatically transform like connections under J → K [J ]
information geometry nicely encoded in divergence functional !
expectation values are another useful coordinate choice
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Regularized probability distribution

introduce now quadratic regulator in probability density

pk[φ, J ] = exp

(
−S [φ]− 1

2Rαβ
k φαφβ + Jαφα − Wk[J ]

)
,

with modified partition function

eWk [J] =

∫
Dφ exp

(
−S [φ]− 1

2Rαβ
k φαφβ + Jαφα

)
.

regulator can be chosen to suppress fluctuations, e. g.

Rαβ
k = k2δαβ
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Divergence functionals with regulator

divergence functional with regulator

D̃k[J‖J ′] =

∫
Dφ pk[φ, J ] ln(pk[φ, J ]/pk[φ, J ′])

=(Jα − J ′α)
δWk[J ]
δJα

− Wk[J ] + Wk[J ′],

flowing divergence in expectation value coordinates with regulator terms
subtracted

Dk[Φ‖Φ′] =D̃k[Φ‖Φ′]− 1
2Rαβ

k (Φα − Φ′
α)(Φβ − Φ′

β)

=Γk[Φ]− Γk[Φ
′]− δΓk[Φ

′]

δΦ′
λ

(Φλ − Φ′
λ).
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Limit of large and small regulator

for large k saddle point approximation becomes valid

lim
k→∞

Dk[Φ‖Φ′] = S [Φ]− S [Φ′]− δ

δΦ′
α

S [Φ′](Φα − Φ′
α)

for small k the full Kullback-Leibler divergence functional is recovered

lim
k→0

Dk[Φ‖Φ′] = D[Φ‖Φ′]
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Flow equation for the divergence functional

[S. Floerchinger, Phys. Lett B 846, 138244 (2023)]

exact flow equation

∂

∂k Dk[Φ‖Φ′] =
1
2

(
∂

∂k Rαβ
k

)[
(Gk[Φ])αβ

− (Gk[Φ
′])αλ (D̃(0,2)

k [Φ‖Φ′])λκ (Gk[Φ
′])κβ

]

close relative of Polchinskis and Wetterichs equations
starting point for approximate solutions
can be used to flow from large to small regulators
flow vanishes when Φ = Φ′

general coordinates changes possible
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Conclusions

information geometry concepts can be applied to quantum and statistical
field theories
divergence functional encodes the information about geometry: metric,
e-connection, m-connection etc.
divergence functional is generating functional for connected and
one-particle irreducible correlation functions
new exact flow equation for divergence functional
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Backup



Advantages / disadvantages of divergence functional

information theoretic meaning
positivity D[Φ‖Φ′] ≥ 0 instead of convexity for Γ[Φ]
geometric realization

connected correlation functions: e-connection
one-particle irreducible: m-connection

general coordinate changes Φ → Ψ[Φ]

D[Ψ‖Ψ′] = D[Φ[Ψ]‖Φ′[Ψ′]]

preserve geometric structure
equilibrium expectation value Φeq corresponding to J = 0 must be known
in addition



Square roots of probabilities
Fisher information metric

Gαβ(ξ) =

∫
dx p(x, ξ)

(
∂

∂ξα
ln p(x, ξ)

)(
∂

∂ξβ
ln p(x, ξ)

)
= 4

∫
dx
(

∂

∂ξα

√
p(x, ξ)

)(
∂

∂ξβ

√
p(x, ξ)

)

for discrete random variable, take coordinates

pj = ξ2
j , j = 1, . . . ,N .

normalization implies
ξ2

1 + . . .+ ξ2
N = 1

Fisher information metric is just induced Euclidean metric on the sphere!


