US Contributions to FCC FCC-US Workshop Tor Raubenheimer April 24, 2023

FCC-ee Layout

Double ring e+e- collider with 91 km circ.

Common footprint with FCC-hh, except around IPs

Perfect 4-fold superperiodicity allowing 2 or 4 IPs; large horizontal crossing angle 30 mrad, crab-waist collision optics

Synchrotron radiation power 50 MW/beam at all beam energies

Top-up injection scheme for high luminosity Requires booster synchrotron in collider tunnel and 20 GeV e+/e-source and linac

Present US Engagement in FCC Accelerator

- Physics and detector studies (numerous US universities and labs)
- high-field magnet development (FNAL, LBNL, NHFML)
- SRF development (800 MHz 5-cell cavity prototype, JLAB)
- FCC-ee accelerator design: optics and collective effects (SLAC)
- FCC-ee machine detector interface (SLAC, BNL, JLAB)
- FCC-ee interaction-region magnet systems (BNL)
- FCC-ee polarisation and precise energy calibration (FNAL, BNL, Cornell, UNM)
- FCC-EIC collaborations (BNL, JLAB)
- FCC tunnel safety (FNAL)
- FCC civil engineering surface building design (FNAL)
- SRF 800 MHz bulk Nb cavities with high-Q in preparation
- SRF cryomodule design in preparation

Opportunities for increased engagement

Some R&D topics match to unique US technical expertise: bulk Nb SRF, compact SC IR magnets, ...

Many other topics leverage US capabilities: beam physics, RF power sources, waveguides, and couplers, power convertors, HTS magnets, beam instrumentation and feedback, controls,

Other topics could engage US industry: 270 km vacuum chamber and associated components, dipole magnets for main ring and booster, supports and girders,

3 different types of SRF cavities for the FCC-ee RF baseline

400 MHz 1-cell cavities Nb/Cu

Removed after Z operation

New compared to CDR

400 MHz 2-cell cavities Nb/Cu

800 MHz 5-cell cavities
Bulk Nb

2-cell is better for W working point (reduced RF power per cav., improved HOM damping)

New RF parameters (February 2023)

Limiting parameters for RF

15-Feb-23	Z		W		Н		ttbar2		
	Collider per beam	booster	Collider per beam	booster	Collider 2 beams	booster	Collider 2 beams	Collider 2 beams	booster
RF Frequency [MHz]	400	800	400	800	400	800	400	800	800
RF voltage [MV]	120	140	1050	1050	2100	2100	2100	9200	11300
Eacc [MV/m]	5.72	5.34	10.95	20.01	10.78	20.01	10.78	20.12	20.10
# cell / cav	1	5	2	5	2	5	2	5	5
Vcavity [MV]	2.14	5.00	8.20	18.75	8.08	18.75	8.08	18.85	18.83
#cells	56	140	256	280	520	560	520	2440	3000
# cavities	56	28	128	56	260	112	260	488	600
# CM	<u>14</u>	7	32	14	65	28	<u>65</u>	<u>122</u>	<u>150</u>
T operation [K]	4.5	2	4.5	2	4.5	2	4.5	2	2
dyn losses/cav * [W]	22	0.2	163	3	158	3	158	23	3
stat losses/cav [W]	8	8	8	8	8	8	8	8	8
Qext	6.6E+04	2.7E+05	1.1E+06	7.7E+06	1.1E+06	1.5E+07	9.4E+06	3.8E+06	8.3E+07
Detuning [kHz]	8.939	5.126	0.472	0.141	0.096	0.014	0.031	0.032	0.003
Pcav [kW]	880	176	385	88	379	44	45	181	8
rhob [m]	9937	9937	9937	9937	9937	9937	9937	9937	9937
Energy [GeV]	45.6	45.6	80.0	80.0	120.0	120.0	182.5		182.5
energy loss [MV]	38.49	38.49	364.63	364.63	1845.94	1845.94	9875.14		9875.14
cos phi	0.32	0.27	0.35	0.35	0.88	0.88	0.56	0.96	0.87
Beam current [A]	1.280	0.128	0.135	0.0135	0.0534	0.003	0.010	0.010	0.0005
at loads from power coupler and	HOM couplers not included	i			ı				
	one RF system per beam				common RF system for both beams				

Cavity performances: 20 % margin on Eacc and Q0 between vertical test and operation

In total: 365 cryomodules, 1460 cavities, 25% with Nb/Cu technology

FCC-ee SRF R&D

- 400 MHz Cu/Nb cavities with Q₀ of >3e9 at 12 MV/m and 4.5K
 - Require strong damping of single-cell cavities to reduce HOMs at Amp-level current
 - Coupler design for ~MW RF power
 - Compact cryomodule design for W, Zh, and t-tbar
- 800 MHz Nb cavities with Q₀ of >3e10 at 25 MV/m and 2K
 - Require strong damping of HOMs in 5-cell cavities for 100 mA
 - \circ Recently increased Q₀ spec from 2e10 to >3e10
 - Coupler design for 250 kW RF power
 - Compact cryomodule design for t-tbar

High Q₀ SRF Systems – US expertise

- LCLS-II developed new N_2 doping approach \rightarrow is operating cryomodules at 1.3 GHz with $Q_0 = 2.7 \times 10^{10}$ at 16 MV/m
- PIP-II is developing high Q cavities at 650 MHz

 LCLS-II-HE will build 23 cryomodules with Q0 = 2.7x10¹⁰ and >21 MV/m

FCC-ee IR Magnet R&D

Complicated integration with SC quadrupoles, solenoids, IR chamber, LumiCal, shielding, and diagnostics

M. Koratzinos,
B. Parker

IR Magnets

- Challenging IR magnets embedded in the detector with 2.2 meter L*
- Similar requirements to Linear Colliders
- Small aperture with modest pole-tip field

Many similarities with EIC IR

Direct Wind Tapered Double Helical Coil

Grooved Double Helical Coil Support

Baseline FCC-ee Coils and Beam Pipe

FCC-ee IR Mockup

IP chamber: critical for performance, MDI

- 1) Central IP vacuum chamber (test cooling and vacuum systems), AlBeMet162 & steel transition (shape of transition, EBW process), Bellows (vacuum and thermal tests), Welding (EBW for elliptical geometry), C-fibre support structure
- 2) Elliptical vacuum chamber with remote vacuum connection, first quadrupole QC1, cryostat, beam pipe and quadrupole and cryostat support, vibration & alignment sensors

FCC-ee Pre-Injector R&D

Collaboration between PSI and CERN with external partners: CNRS-IJCLab (Orsay), INFN-LNF

20 GeV linac to Booster

FCC-ee Accelerator Layout

- The arc cells are repeated 2000 times around the ring
 - Critical to understand and optimize the layout for cost, installation, alignment, operation, and maintenance
 - Includes placement of the main rings and the Booster
 - 6000 11-meter twin-bore dipoles and 3000 3-meter twin-bore quadrupoles plus the booster

FCC-ee Vacuum System

Present design similar to that presented in the CDR:

Geometry: Tube with two winglets 2 mm thick, 60 mm ID

Material: Copper

- Good thermal conductivity and low electrical resistivity
- Shielding for the X-Ray synchrotron radiation fan and minimizing the irradiation of machine and tunnel components

Surface treatment: NEG coating

- Distributed pumping speed
- Low SEY
- Quick vacuum conditioning

Lumped SR photon absorber: Distanced by about 5.8 m

Lumped pump: no need for a systematic installation in vicinity of the absorbers →1 or 2 per cell

Vacuum chamber prototype cross-section

Illustration of vacuum chambers with absorbers and pumps

The whole vacuum system shall be designed with a cost-effective and sustainable approach.

US DOE project key dates might differ somewhat from the FCC project milestones shown above. Possibly: CD0 ~2029, CD1 ~2030/31, CD2 ~2033/34, scope-specific CD3a ~2032-34, full CD3 2036/37, CD4~2046/47.

Planning US Engagement

- Working to develop an R&D budget request for P5
 - Expect that OHEP will establish a funding path for FCC-ee accelerator and detector R&D and we're developing a placeholder to provide guidance
- FCC-US meeting is an opportunity to start thinking about details
 - Focus on technologies other than SRF right now: IR magnets, collimation, backgrounds, beam physics,
- Lots more detail will be discussed at FCC Week 2023
 - Join us there!

FCC-ee US Engagement Summary

- US has been engaged in the FCC-ee design
- Many opportunities for engagement in R&D stage which will continue into 2030's – many synergies with EIC
- A decision on FCC-ee will be presumably made on 2027 timescale → increased engagement with R&D, engineering, and fabrication
- Assuming the project moves ahead, the US contribution could be B\$-scale

SPACE FOR ADDITIONAL LOGOS

Thank you for your attention.

Management and Advisory

Lia Merminga (FNAL) is member of Steering Committee

Andy Lankford (UC Irvine) is vice-Chair of Collaboration Board

Tor Raubenheimer (SLAC) is co-convener of Accelerators Work Package and member of Coordination group

Michiko Minty (BNL) is member of Scientific Advisory Committee