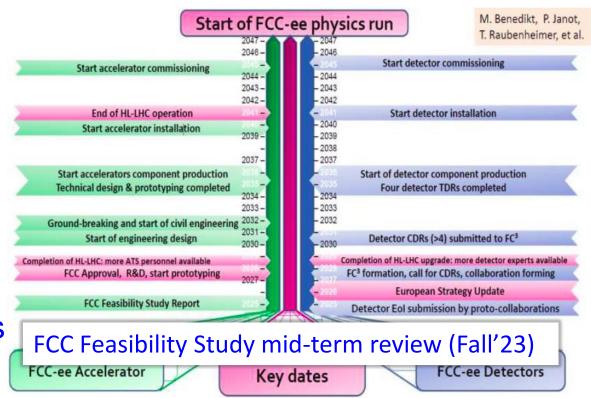


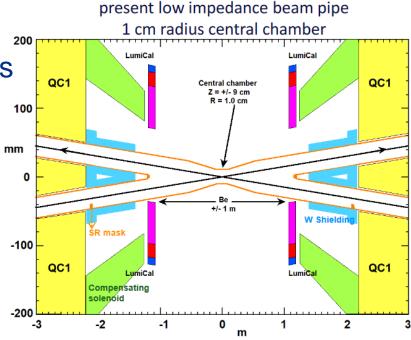
Summary of the 1st US FCC Workshop: **Accelerators**

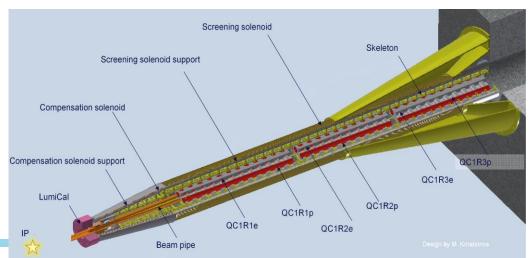

Vladimir SHILTSEV (Fermilab) and Tor RAUBENHEIMER (SLAC)

FCC Workshop, BNL, April 26, 2023

Accelerators at this Workshop: Plenaries

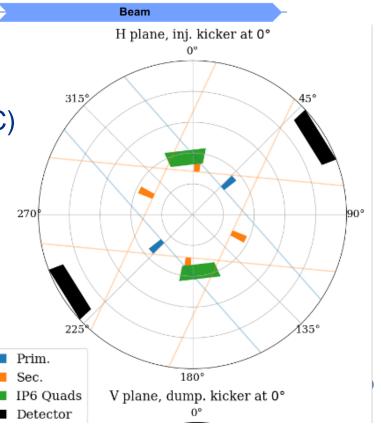
Michael Benedikt Tor Raubenheimer Vladimir Shiltsev Thomas Roser


- **FCC** Project
- Accelerator
- Synergies across HFs
- ITF report



Proposal Name	CM energy	Lum./IP	Years of		Years to	Construction	Est. operating	
	nom. (range)	@ nom. CME	pre-project		first	cost range	electric power	
	[TeV]	$[10^{34} \text{ cm}^{-2} \text{s}^{-1}]$		R&D		physics	[2021 B\$]	[MW]
FCC-ee ^{1,2}	0.24	7.7 (28.9)		0-2		13-18	12-18	290
	(0.09 - 0.37)							

Topic 1: Accelerator MDI and IR Magnets


- Manuela Boscolo FCCee IRs:
 - 4 hi-lumi IPs/CrabWaist, challenges
 - Now 2 cm dia central chamber
 - Control/dump ~400kW s.radiation
 - Full IR mock up in Frascati
- Brett Parker
 - Complex set of magnets
 - 30 tons of pull on anti-solenoid
- John Seeman
 Angelika Drees
 - Tons of relevantexperience from PEP-II(199-2008) and EIC (now)

Topic 2: Collimation and Protection

- Andrey Abramov current FCCee scheme:
 - 18 MJ at 45 GeV (LHC ions)
 - IRs and arcs
 - Source of instabilities
 - S-KEKB damage (80% in 2 tugger)
 - Alternatives:
 - hollow laser Compton (J.Byrd)
 - hollow e-beam (as in Tevatron, RHIC)
- Matthew Valette EIC collimation
 - 18 GeV e-
 - 18 cm long collimators
 - Conceptually similar to FCCee

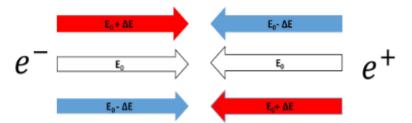
Settings driven by SR

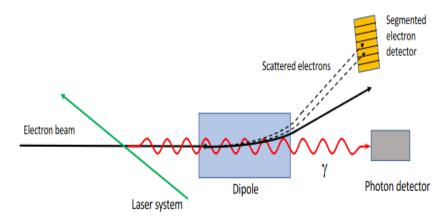
power loads in MDI

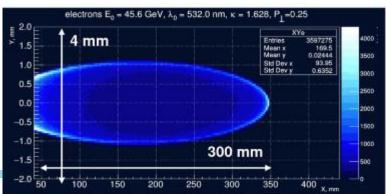
Determined by optics and

beam pipe radius

Minimum setting limited

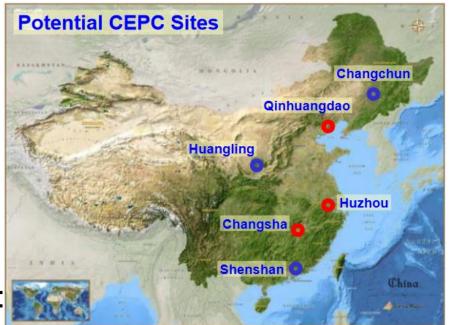

Hierarchy margins


by top-up injection, lifetime


Topic 3: Polarization and E-calibration

- Jacqueline Keintzel overview:
 - 4keV at 45GeV
 - 250 keV at 80 GeV
 - 160 m of wigglers to polarize
 - 5-10% P and polarimeters
 - Monochromatization (DAFNE)
 - Polarized e+ e- sources:
 - Save ~2-3 hr lumi time /day
- Eliana Gianfelice-Wendt
 - Simulations for EIC and FCCee
 - Control beam orbit ~20 um
- Dave Gaskell
 - 2 Compton polarimeters (1%)
 - Quite similar for EIC and FCCee

Opposite sign dispersion helps reducing ECM spread → **Monochromatization**



Topic 4: Joint with Detectors

- Jianchung Wang

 CEPC:
 - Raised P=30→50MW
 - TDR later this yr, 36B RMB
 - A lot of progress
 - If in the 15th 5-yr plan civil '26
 - 1st beam 2036
- Jacqueline Keintzel IR diagn.:
 - 1um BPMs
 - Polarimeters
 - SR dumps
 - Wigglers
 - How do we support central part of the detector, etc

Thinking Ahead

Our Message to P5 (on the US FCCee):

Higgs Factory is slated to be the next high priority Energy Frontier project following the completion of HL-LHC.

FCCee is one of the most feasible HF options

We are considering a plan for R&D that could lead to fabrication of several critical components for the FCCee..... for example:

RF Systems - R&D, Design and Fabrication

- 1.800 MHz SRF cavities with Q0 = $(3 \rightarrow 6)e10$ at 25 MV/m; then 4-cavity Cryomodules
 - 28 RF cryomodules are needed for the Higgs operation,
 - Follow up possibility another 244 CMs (later) for Booster/Collider Rung at ttbar
- 2. High efficiency **power sources** for 800 MHz with $\eta > 80\%$
- 3. High gradient 70 MV/m 150 MOhm/m copper **RF** for injector (eg C^3 type):
 - 6-20 GeV RF high gradient inj. Linac

Magnets/MDI - R&D, Design and Fabrication

- 1. IR magnets, cryostats, masks (fabr. for 4 IPs)
- 2. FCCee collider ring magnets (low field, DC)
- 3. Booster ring magnets (low field, ~1s ramp)
- 4. Polarization wigglers (0.1-0.7 T, EM)
- 5. FCChh collider ring magnets (~14-20T, DC)
 - Already part of the GARD magnets (MDP)

"Dynamics" - R&D, Design and Fabrication

1. Interaction region design, and integrated machine design

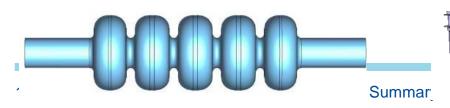
Modeling/simulations: crab waist and beam-beam/beamstrahlung,
 DA, chromatic compensation and optics correction schemes

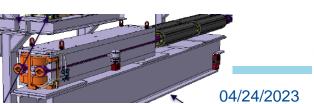
2. Losses, collimation and background

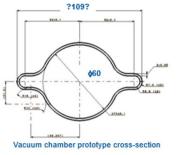
 Modeling/simul: codes on halo formation, background in detectors, efficient collimation system(elens/NLO/CS), detector background masking, TMCI, build collimation system for 4 IRs and rings

3. Polarization (esp. at 45 GeV and 80 GeV beam energies):

• Modeling/simulations: 45-80 GeV energy calibration, error analysis, design and build wigglers, polarimeters, polarized sources


4. Instrumentation:


• Design and prototyping, then build, IR BPMs and lumi monitors, TMCI feedback systems, emittance and halo monitors, Low Level RF



Possible Additional Scope for Later Considerations:

- 1) 18.4 GV of SRF for ttbar collider operations
 - By 2055; after the Higgs-Phase ramps down
- 2) Magnets for the collider and booster rings
- 3) 270 km of beam pipes (collider, booster)
- 4) RF bypass beamline for optimal switch ZH,tt
- 5) Infrastructure contributions
 - Alignment | Radiation protection | Safety systems | Power converters
 - -The need, scope, cost and timeline?

That was a very productive Workshop!

Thanks to all speakers and attendees

– on Zoom and in-person – for
participation and contributions!

(after P5) See you all at the FCC Week in London and at the next US-FCC Workshop!

