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• Full simulation (GEANT):
• simulates all particle-detector interaction (e.m/hadron showers, nuclear 

interaction, brem, conversions)

• Experiment Fast Simulation (ATLAS, CMS ..)
• simplify geometry, smear at the level of detector hits, frozen showers

• Parametric simulation (Delphes, PGS):
• parameterise detector response at the particle level(efficiency, 

resolution on tracks, calorimeter objects)
• reconstruct complex objects and observables(use particle-flow, jets, 

missing ET, pile-up ..)

• Ultra Fast (ATOM, TurboSim):
• from parton to detector object (smearing/lookup tables)

Detector Simulation

102-103 s/ev

10-102 s/ev

10-2 - 10-1 s/ev
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Why fast parametric detector 
simulation?

• Easily scan detector parameters

• Reverse engineer detector that 
maximises performance

• Preliminary sensitivity studies 
for key physics benchmarks

Parametric simulation paradigm

→ (usual) paradigm adopted in the context of FCC studies
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Delphes in a nutshell

• designed to deal with hadronic environment 
• well-suited also for e+e- studies 
• detector cards for: CMS (current/PhaseII) - ATLAS - LHCb - FCC-hh - 

ILD - CEPC - FCCee (IDEA/CLD)

• Includes:
• pile-up
• charged particle propagation in B field
• EM/Had calorimeters
• particle-flow

• Provides:
• leptons, photons, neutral hadrons
• jets, missing energy
• heavy flavour tagging

• Delphes is a modular framework that simulates the response of a 
multipurpose detector in a parameterised fashion
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Fast Tracking Simulation

Track Smearing

• Simple tracker geometry implementation, 
including material 

• Computes full covariance matrix (in present 
Delphes we have “diagonal” smearing in the 5 
tracking parameters)

• Can be used for studying impact of material and 
realistic HF tagging simulation Bedeschi, Gouskos, MS, [2202.03285]
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FCC-ee TrackCovariance

TrackCovariance module

• Requires: 
• Geometry input

• cylinder coaxial
• planar disks

• Magnetic field
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 PID:

• dN/dx method: 
• param. from Garfield (vs βƔ)

• 4 gas mixes implemented
• parameterisation 

PID: ClusterCounting
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Dual Readout Calorimetry

• Calorimeter segmentation specified 
in (η,ϕ) coordinates

• Particles that reach calorimeters 
deposits fixed fraction of energy 
in fEM (fHAD) in ECAL(HCAL)

• Particle energy and position is 
smeared according to the 
calorimeter it reaches

In Dual Readout, if hadron and EM hit same cell, assume 
hadronic resolution
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Particle-Flow with Dual Readout

• EM (had) deposit 100% in ECAL (HCAL)
• No propagation in calorimeters
• No clustering (topological) clustering, exploiting pre-defined grid

• Given charged track hitting calorimeter cell:
• is deposit more compatible with charged only or charged + neutral hypothesis?
• how to assign momenta to resulting components?

• We have two measurements (Etrk, σtrk) and (Ecalo, σcalo)
• Define ENeutral = Ecalo - Etrk

Algorithm:

• If  Eneutral/√(σcalo2 + σtrk2) > S:
   → create PF-neutral particle + PF-track

• else:
          create PF-track and rescale momentum by:

 combined resolution ~ track resolution 

KL

DR

ɣ
π+
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Timing detectors 

Timing can be used to measure TOF, and hence 
for particle ID (either SM or BSM long lived 
particles)

Neutral LLP

Charged LLP
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PID:  Time of flight
• Time-of-flight PID computed by a sequence of modules:

• ParticlePropagator computes path length and final time ( L, tF (MC) )
• TrackCovariance (Calorimeter) computes the momentum (energy)
• TimeSmearing module computes measured time (with given time resolution)
• TruthVertexFinder calculates position and time of MC truth vertices
• TimeOfFlight module calculates initial time tI:

• tI = tI (MC) — optimistic , default
• tI = 0 — pessimistic, for neutrals
• tI = |xvtx (MC)| / βvtx (MC)  (naive attempt to realistically account for 

displacement)

• User has to compute mt.o.f on output tracks using :
charged

neutral 
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PID:  Time of flight

• Implemented in the IDEA card for testing 
for both charged and neutrals:
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Particle ID (combined)
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(Exclusive) Jet Clustering

• Implemented Durham inclusive/exclusive 
clustering in both “dcut” and “njet” mode

• "Valencia” algorithm

Gavin Salam
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Validation report

• define a configuration file: 
• observables, binning 

• configurations for IDEA and FCC-hh scenario I exist
• simple to run:

e/gamma energy resolution

python3 submit.py  --config config/cfg_idea.py launch_local

• produces a large report on pdf with validation plots for all objects/efficiencies/
resolutions

PF validation single charged pion PF validation jets
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• Delphes is can hardly predict object low level object reco. efficiency 
(e.g. tracking, calohit deposits ) 

BUT:

• Tracking resolution , dN/dx
• Particle Flow
• Jet 
• Missing energy 
• HF-tagging

Performance can be predicted (with all the caveats of a fast simulation 
model) … 

Comments 
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Conclusion

• Delphes provides a simple, highly modular framework for performing fast 
detector simulation

• Can be used and configured for:
• quick phenomenological studies
• explore new detector geometries, and iterate over detector design
• as an alternative for full-sim if accurately tuned

• New features include:
• tracking 
• Particle ID tools (dNdx/timing)
• Dual Readout calorimeter and Particle Flow
• Detector configuration validation suite 
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Backup
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Modularity

• The modular system allows the user 
to configure a detector and schedule 
modules via a configuration file (.tcl), 
add modules, change data flow, alter 
output information

• Modules communicate entirely via 
exchange of collections (vectors) of 
universal objects (TObjArray of 
Candidate, 4-vector-like objects)

• Any module can access TObjArrays 
produced by other modules.
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Run

• Install ROOT from root.cern.ch

• Clone Delphes from github.com/delphes

• Run Delphes:

>   ./configure
>   make 
>   ./DelphesHepMC [detector_card] [output] [input(s)]
   
• Input formats: STDHEP,  HepMC,  ProMC,  Pythia8

• Output: ROOT Tree

http://root.cern.ch
http://github.com/delphes
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Configuration file

• Delphes configuration file is based on tcl scripting language
• This is where the detector parameters, the data-flow and the output 

content delphes root tree content are defined.
• Delphes provides tuned configurations for most existing detectors:

• ATLAS, CMS, ILD, FCC, CEPC … 

The order of execution of the 
various modules is configured in the 
execution path (usually defined at 
the beginning of the card):
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Configuration file
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Configuration file
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Configuration file

Output collections are configured in the 
TreeWriter module
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Tracking in FastSim

Full Simulation
Delphes

TkLayout

pattern recognition
track fitting

-most accurate
-least flexible

-does not allow for 
change of geometry 

-standalone tool
-predicts tracking performance for 

a given geometry
-allows for quick turnaroud
- no further implementation 

needed in Delphes
-requires intermediate step

parameterisation
 (d0, dz, p, ctg θ, φ)  

FastTrackCovariance

-(for now) standalone tool
-can be plugged into Delphes
-predicts performance given 

geometry
-allows for quick turnaroud

-not implemented in Delphes yet


