
Michele Selvaggi
CERN

FCC workshop at BNL - 25/04/2023

DELPHES simulation
for FCC

2

• Full simulation (GEANT):
• simulates all particle-detector interaction (e.m/hadron showers, nuclear

interaction, brem, conversions)

• Experiment Fast Simulation (ATLAS, CMS ..)
• simplify geometry, smear at the level of detector hits, frozen showers

• Parametric simulation (Delphes, PGS):
• parameterise detector response at the particle level(efficiency,

resolution on tracks, calorimeter objects)
• reconstruct complex objects and observables(use particle-flow, jets,

missing ET, pile-up ..)

• Ultra Fast (ATOM, TurboSim):
• from parton to detector object (smearing/lookup tables)

Detector Simulation

102-103 s/ev

10-102 s/ev

10-2 - 10-1 s/ev

3

Why fast parametric detector
simulation?

• Easily scan detector parameters

• Reverse engineer detector that
maximises performance

• Preliminary sensitivity studies
for key physics benchmarks

Parametric simulation paradigm

→ (usual) paradigm adopted in the context of FCC studies

4

Delphes in a nutshell

• designed to deal with hadronic environment
• well-suited also for e+e- studies
• detector cards for: CMS (current/PhaseII) - ATLAS - LHCb - FCC-hh -

ILD - CEPC - FCCee (IDEA/CLD)

• Includes:
• pile-up
• charged particle propagation in B field
• EM/Had calorimeters
• particle-flow

• Provides:
• leptons, photons, neutral hadrons
• jets, missing energy
• heavy flavour tagging

• Delphes is a modular framework that simulates the response of a
multipurpose detector in a parameterised fashion

5

Fast Tracking Simulation

Track Smearing

• Simple tracker geometry implementation,
including material

• Computes full covariance matrix (in present
Delphes we have “diagonal” smearing in the 5
tracking parameters)

• Can be used for studying impact of material and
realistic HF tagging simulation Bedeschi, Gouskos, MS, [2202.03285]

6

FCC-ee TrackCovariance

TrackCovariance module

• Requires:
• Geometry input

• cylinder coaxial
• planar disks

• Magnetic field

7

 PID:

• dN/dx method:
• param. from Garfield (vs βƔ)

• 4 gas mixes implemented
• parameterisation

PID: ClusterCounting

8

Dual Readout Calorimetry

• Calorimeter segmentation specified
in (η,ϕ) coordinates

• Particles that reach calorimeters
deposits fixed fraction of energy
in fEM (fHAD) in ECAL(HCAL)

• Particle energy and position is
smeared according to the
calorimeter it reaches

In Dual Readout, if hadron and EM hit same cell, assume
hadronic resolution

9

Particle-Flow with Dual Readout

• EM (had) deposit 100% in ECAL (HCAL)
• No propagation in calorimeters
• No clustering (topological) clustering, exploiting pre-defined grid

• Given charged track hitting calorimeter cell:
• is deposit more compatible with charged only or charged + neutral hypothesis?
• how to assign momenta to resulting components?

• We have two measurements (Etrk, σtrk) and (Ecalo, σcalo)
• Define ENeutral = Ecalo - Etrk

Algorithm:

• If Eneutral/√(σcalo2 + σtrk2) > S:
 → create PF-neutral particle + PF-track

• else:
 create PF-track and rescale momentum by:

 combined resolution ~ track resolution

KL

DR

ɣ
π+

10

Timing detectors

Timing can be used to measure TOF, and hence
for particle ID (either SM or BSM long lived
particles)

Neutral LLP

Charged LLP

11

PID: Time of flight
• Time-of-flight PID computed by a sequence of modules:

• ParticlePropagator computes path length and final time (L, tF (MC))
• TrackCovariance (Calorimeter) computes the momentum (energy)
• TimeSmearing module computes measured time (with given time resolution)
• TruthVertexFinder calculates position and time of MC truth vertices
• TimeOfFlight module calculates initial time tI:

• tI = tI (MC) — optimistic , default
• tI = 0 — pessimistic, for neutrals
• tI = |xvtx (MC)| / βvtx (MC) (naive attempt to realistically account for

displacement)

• User has to compute mt.o.f on output tracks using :
charged

neutral

12

PID: Time of flight

• Implemented in the IDEA card for testing
for both charged and neutrals:

13

Particle ID (combined)

14

(Exclusive) Jet Clustering

• Implemented Durham inclusive/exclusive
clustering in both “dcut” and “njet” mode

• "Valencia” algorithm

Gavin Salam

15

Validation report

• define a configuration file:
• observables, binning

• configurations for IDEA and FCC-hh scenario I exist
• simple to run:

e/gamma energy resolution

python3 submit.py --config config/cfg_idea.py launch_local

• produces a large report on pdf with validation plots for all objects/efficiencies/
resolutions

PF validation single charged pion PF validation jets

16

• Delphes is can hardly predict object low level object reco. efficiency
(e.g. tracking, calohit deposits)

BUT:

• Tracking resolution , dN/dx
• Particle Flow
• Jet
• Missing energy
• HF-tagging

Performance can be predicted (with all the caveats of a fast simulation
model) …

Comments

17

Conclusion

• Delphes provides a simple, highly modular framework for performing fast
detector simulation

• Can be used and configured for:
• quick phenomenological studies
• explore new detector geometries, and iterate over detector design
• as an alternative for full-sim if accurately tuned

• New features include:
• tracking
• Particle ID tools (dNdx/timing)
• Dual Readout calorimeter and Particle Flow
• Detector configuration validation suite

18

Backup

19

Modularity

• The modular system allows the user
to configure a detector and schedule
modules via a configuration file (.tcl),
add modules, change data flow, alter
output information

• Modules communicate entirely via
exchange of collections (vectors) of
universal objects (TObjArray of
Candidate, 4-vector-like objects)

• Any module can access TObjArrays
produced by other modules.

20

Run

• Install ROOT from root.cern.ch

• Clone Delphes from github.com/delphes

• Run Delphes:

> ./configure
> make
> ./DelphesHepMC [detector_card] [output] [input(s)]

• Input formats: STDHEP, HepMC, ProMC, Pythia8

• Output: ROOT Tree

http://root.cern.ch
http://github.com/delphes

21

Configuration file

• Delphes configuration file is based on tcl scripting language
• This is where the detector parameters, the data-flow and the output

content delphes root tree content are defined.
• Delphes provides tuned configurations for most existing detectors:

• ATLAS, CMS, ILD, FCC, CEPC …

The order of execution of the
various modules is configured in the
execution path (usually defined at
the beginning of the card):

22

Configuration file

23

Configuration file

24

Configuration file

Output collections are configured in the
TreeWriter module

25

Tracking in FastSim

Full Simulation
Delphes

TkLayout

pattern recognition
track fitting

-most accurate
-least flexible

-does not allow for
change of geometry

-standalone tool
-predicts tracking performance for

a given geometry
-allows for quick turnaroud
- no further implementation

needed in Delphes
-requires intermediate step

parameterisation
 (d0, dz, p, ctg θ, φ)

FastTrackCovariance

-(for now) standalone tool
-can be plugged into Delphes
-predicts performance given

geometry
-allows for quick turnaroud

-not implemented in Delphes yet

