FCC Software Detector full simulation

Brieuc François (CERN)

1st Annual U.S. FCC Workshop – BNL

Apr. 25th, 2023

Content

- Overview of the FCC(-ee) Detector Full Simulation
 - > Framework
 - > CLD, IDEA, Noble Liquid
- Focus on the Noble Liquid Calorimeter Software
 - Geometry
 - Calibration
 - > Noise
 - Clustering
 - Performance Studies

Motivation

- > Detector **full simulation** is a corner stone of HEP experiments
- Already crucial at the 'planning stage' of a future facility
 - Without test-beam data, only way to reliably estimate **detector performance** parameters
 - Feeds fast simulation tools to estimate the physics reach
 - \rightarrow One can not prototype every sub-detector option \rightarrow mandatory for **detector optimization**
 - > We have to show that **complete detectors**, meeting **requirements**, can be **designed**
 - Before the final detector is built, full sim is the only place where all sub-detectors live together and interact with each other in a realistic way

General Overview

- Detector R&D and optimization campaigns span over decades
 - > Need a **stable** and continuously **maintained** software framework
- Future collider studies performed by small teams (compared to operating detectors)
 - > Exploiting **synergies** is a must
- The community agreed on using a common software framework for all future collider studies: Key4hep
 - Complete set of tools: generation, simulation, reconstruction, analysis
 - State of the art HEP libraries availability: Spack
 - Avoid re-inventing the wheel
 - Common data format: EDM4hep (PODIO)
 - Easy sharing
 - Detector description with **DD4hep**
 - Next slide
 - Gaudi orchestration

FCC-ee Detector Concepts

- > Two concepts proposed for the FCC-ee CDR: CLD, IDEA
- More detectors needed if we have more than 2 IPs
 - > New concept based on **High Granularity Noble Liquid calorimeter** under development
- Many different sub-detector technologies on the table!
- Ultimate goal pursued: **full inter-operability of sub-detectors** (eased by DD4Hep plugand-play approach) and **reconstruction algorithms** (dataformat, more challenging)

CLD Full Sim Status

- All CLD sub-detectors implemented in DD4hep
 - Several configurations envisaged
- Full simulation + reconstruction workflow available!
 - > Simulation through *ddsim*
 - Reconstruction through Marlin
 - Background overlay, digitization, conformalTracking, ParticleFlow (PandoraPFA), vertexing and flavor tagging
 - Inherited from ILD/CLICdet
- Marlin reconstruction based on LCIO data format but can be integrated in EDM4hep
 Gaudi based workflows through the MarlinWrappers + data format translation
 - Example of steering file

IDEA Full Sim Status

- > 'Standalone' (plain Geant4) detector simulation partially available
 - > Tracker hits and tracks + calorimeter hits are there
 - Working on Particle Flow implementation
 - Possibility to output hits and tracks in EDM4hep under validation
 - Misses the plug and play feature

- Porting detector description to DD4hep
 - Detailed implementation of the vertex detector in DD4hep almost available
 - Drift chamber implemented, working on its reconstruction/validation
 - > Dual readout "bucatoni" available, working on integrating it with other detectors
 - > Dual readout crystal ECAL starting
- More details can be found in this morning's talks

Noble Liquid Based Full Sim Status

- Detector concept being designed (early stage)
- DD4hep ECAL barrel implementation validated (more later)
- > HCAL and ECAL end-cap implementation under validation
- Drift chamber detector from IDEA simplified version
 - Very easy from the 'plug-and-play' approach
- Further developments
 - ECAL/HCAL interface
 - Choice of magnet position based on realistic field maps
 - > Tools implemented, impact on tracking to be assessed
 - Particle Flow
 - Needs tracks first
 - >
- More details in the second part of the talk


```
<include ref="../../DetFCCeeIDEA/compact/SimplifiedDriftChamber.xml"/>
<include ref="../../DetFCCeeECalInclined/compact/FCCee_ECalBarrel.xml"/>
<include ref="../../DetFCCeeHCalTile/compact/FCCee_HCalBarrel_TileCal.xml"/>
<include ref="../../DetFCCeeCalDiscs/compact/FCCee_EcalEndcaps_coneCryo.xml"/>
```

Magnet inside ECAL

Magnet outside ECAL

PID Detectors

- Detector layouts are not frozen!
 - Exploring further sub-detector technologies
- Particle ID detectors can complement/replace dE/dx or dN/dx
 - Technology more mature then at the LEP time (DELPHI)
 - > LHCb RICH
- Accurate and comprehensive estimation of what it brings needs full sim
 - Photon yield/collection, additional material budget
 - > Quite difficult to implement
- Array of RICH Cells (ARC) implemented in DD4hep
- Readout and reconstruction will start soon

Noble Liquid Calorimeter

High granularity Noble Liquid ECAL

- Absorbers: Lead (Pb) or Tungsten (W) straight or trapezoidal 1st layer inclined (50°) plates
- Sensitive media: Liquid Argon (LAr) or Krypton (LKr)
- Everything inside a cryostat (Aluminum or Carbon Fibre)
- > Target a factor 10-15 increased granularity compared to the ATLAS implementation
 - Multi-layer PCB readout electrodes

Full Sim in a nutshell

Full Sim chain in a nutshell (schematic)

Legend: Gaudi based

Documentation: link

Links to code

Detector description

k4SimGeant4

- Factorized Detector Building (DD4HEP)
 - > C++ detector factory: handles the **generic geometry structure**
 - Cryostat cylinder, inclined plates, ...
 - > XML file with specific detector parameters
 - > Inner/Outer radius, materials, inclination, ...
 - > Allows you to study different scenarios with minimal work
- Detector segmentation based on DD4HEP Readouts
- Readout cells differ in general from physical cells.
 - E.g. having high sampling frequency improves energy resolution
 → phi granularity higher than what physics requires
 - Flexibility choice: do the time consuming Geant4 simulation with atomic granularity, then apply (possibly several) cell recombinations with RedoSegmentation
- Room for improvement
 - > The same cell recombination scheme is applied to the whole calorimeter
 - > One would like to have smaller cells for e.g. the strip layer
 - Detector segmentation from a fictive grid

CCDetectors

Sampling Fraction

- In a Sampling Calorimeter, only a fraction of the particle energy is measured
 - Scaling of the energy deposited in the sensitive medium to account for energy deposited in the passive components (absorber and readout PCB)
- Modified detector config with everything set as sensitive (XML)
 - SamplingFractionInLayers stores the energy ratio
 (active/total) per event and per longitudinal layer

k4SimGeant4

- SF = mean of Gaussian fit of the active/passive energy ratio
- Propagate results to CalibrateInLayersTool k4RecCalorimeter
- Fully automatized procedure with control plots
 - Everything defined in a Gaudi config can be passed as command line argument
 - Or you can use sed for more permanent usage
- In a Noble Liquid calorimeter, the sampling fraction has almost no dependence on the incident particle energy
 - No need to apply this procedure to many energy points

Upstream/Downstream energy correction

- Unmeasured energy deposited in upstream material: calorimeter supporting structure/cryostat, magnet, services, ...
- Always try to minimize calorimeter radial extent + stochastic nature of shower depth → energy deposited after the calorimeter
- > Strong correlation between energy in first(last) sensitive layer and energy deposited upstream(downstream) → one can correct for that!
 - EnergyInCaloLayers → stores energy in various dead materials and in all the active layers (modified XML)

k4SimGeant4

- Centrally available scripts perform the fits
- CorrectCaloClusters → applies the correction based on cluster total energy and energy from first/last layer

k4RecCalorimeter

 Again, fully automatized procedure with intermediate diagnostic plot production

Noise

- Noise depends on many factors
 - Detector capacitance, signal extraction scheme, front-end electronics, etc...
 - Estimated outside of the main software framework: Finite Element Method tools (Ansys) + analytical implementation (Mathematica)
 - > Stored in a rootfile, per longitudinal layer and as a function of polar angle
- Introduced in the simulation by NoiseCaloCellsFromFileTool k4RecCalorimeter
 - Random number from Gaussian whose width is taken from the rootfile (layer/ Θ dependent)

Clustering

> Three clustering algorithms available

k4RecCalorimeter

- CreateCaloClustersSlidingWindow
 - Simple sliding window with fixed size trying to find local maxima
- CaloTopoCluster
 - Find seeds and iteratively collects neighboring cells in several steps of S/N thresholds
- CLUE (currently only in 2D)
 - Energy density based algorithm

Figure 28: An illustration of the basic concept of the sliding window algorithm. A window of fixed size (here $N_n^{\rm seed} \times N_n^{\rm seed} = 3 \times 3$) is moved across the tower grid.

Performance results

Example of performance results produced recently with FCC-ee LAr ECAL SW Energy resolution for different absorbers and noble liquids

Moliere Radius comparison between Pb + LAr and W + LKr

Trapezoidal absorbers (cst sampling fraction per layer)

 τ final state categorization confusion matrix (π^0 count)

Particle Identification

- \sim π^0/γ separation studied with different MVA and geometries
 - τ^0 and γ particle gun, 100 k events each, [1 100] GeV uniformly distributed in Φ and θ, with and without strip layer
 - > DNN with ~15 variables
 - No loss of perf. w/ one training for the whole energy range w.r.t. energy specific trainings (parametrized DNN with $E_{Cluster}$)
 - > 3D Convolutional NN (CNN) with 10 x 10 x 12 window
 - > Tremendous improvement w.r.t. DNN
 - Hybrid NN (HNN) with both DNN and CNN
 - 95% γ efficiency for 10% π^0 contamination for the whole energy range (no strip layer + baseline conservative geometry)

Categorical Data

Multi-laver

Perceptron (MLP)

Concatenate

FC + Linear

Activation

Summary

- > The FCC software full simulation is under active development
- Most core components are available
- CLD can already be fully simulated and reconstructed through ddsim + MarlinWrapper
- IDEA is being implemented in DD4hep
- Noble Liquid ECAL available for performance studies through Gaudi
 - Include all the dominant effect (calibration, upstream material correction, noise)
 - Currently implementing missing detectors to have a full detector concept
- > There is a lot left to do!
- Working on detector simulation gives the opportunity to learn both about software and detector physics
 - You are more than welcome to join the effort!

Thank you!

Additional material

DD4hep

- DD4hep: generic detector description supporting the full life cycle of the experiment
 - Conceptualization, optimization, construction and operations
- Complete description
 - > Geometry readout, alignment, calibration, ...
- DD4hep uses ROOT TGeo as geometry implementation
 - Output format/interfaces: Geant4, GDML, easily extensible
- From the user perspective
 - C++ for generic geometry structure construction
 - > XML configuration for detector parameters

Noble Liquid/Absorber study

Absorber	Liquid	Gap size [mm]	Absorber size [mm]	Phi bins	Radial extend [mm]	Radial length 22 X0 [mm]
Pb	LAr	1.239 * 2	1.8	1536, 768, 512, 384, 256	400	
	LAr	3.079 * 2	3.8	768	400	
	LKr	1.239 * 2	1.8	768	400	~337.5
W	LKr	1.239 * 2	1.8	768	~207.5	
	LAr	2.156 * 2	1.8	576	~323.9	
none	LKr (homo)	~4.2	0.001	768	~1034	
	LXe (homo)	~4.2	0.001	768	~647.5	

	Avg sampling fraction		
Pb + LAr baseline	0.17		
Pb + LKr	0.23		
Pb + LAr double	0.17		
W + LKr	0.15		
W + LAr	0.16		
LKr	0.97		
LXe	0.97		

Clusters

Cells

	A/E	B/sqrt(E)	С		A/E	B/sqrt(E)	C
Pb + LAr	0	0.079	0.011	Pb + LAr	0	0.077	0.021
Pb + LKr	0	0.071	0.011	Pb + LKr	0	0.070	0.050
Double	0	0.099	0.015	Double	0	0.098	0.027
W + LKr	0	0.075	0.052	W + LKr	0	0.083	0.050
W + LAr	0	0.086	0.041	W + LAr	0	0.085	0.041
LKr	0	0.019	0.005	LKr	0.004	0	0.008
LXe	0	0.016	0.008	LXe	0	0.007	0.010

Noise

Noise for Charge Preamp & CR²-RC²

- Series noise: Case of charge preamp and CR²-RC² shaper
 - ideal transmission line of length L with $t_d = L/v$ the line delay
 - no attenuation, no skin effect, but these effects are small (negligible) at cryogenic temperatures
 - charge preamplifier, CR²-RC² shaper (different to ATLAS LAr!),
 - see NIM A330 (1993) 228-242
- Similar procedure for parallel noise (not shown here)

$$V_n^2 = \int_0^\infty \frac{e_n^2}{|R_0 + Z|^2} \frac{1}{\omega^2 C_f^2} |H(i\omega)|^2 \frac{\mathrm{d}\omega}{2\pi} \qquad \text{with} \qquad Z = \frac{iR_0 \tan{(\omega t_d)} - \frac{i}{\omega C_d}}{\frac{\tan{(\omega t_d)}}{R_0 + G} + 1}$$

$$V_n^2 = \frac{\tau^4 C_d^2 e_n^2}{2\pi \tau_p^2 C_F^2} \int_0^\infty \frac{\omega^2 \left(\tau_p \omega \cos \left(\omega t_d\right) + \sin \left(\omega t_d\right)\right){}^2}{\left(\tau^2 \omega^2 + 1\right)^4 \left(\tau_p^2 \omega^2 + 1\right)} \, \mathrm{d}\omega$$

- This series noise needs to be normalised to signal response V(x) of unit charge Q_0 :
 - either Dirac delta-function $Q_0\delta(t)$,
 - or triangular signal (t_{dr} is the e⁻-drift time): 2Q₀/t_{dr}(1 t/t_{dr})

$$ENC = Q_0 \frac{V_n}{\max|_x(V(x))}$$

$$\tau_p = R_0 C_d$$

Readout Electrodes

Horizontal axis expanded by a factor 10

