Tools and Approach
of the
PEP-II IR Design

John T. Seeman and Michael Sullivan
SLAC
April 25, 2023

h NATIONAL
! A- @® ACCELERATOR

=
P b NN  ABORATORY



PEP-Il Parameters

PEP-1I TIMELINE

1987: Particle physicists determine that
asymmetrical beam energies are preferred.

1991: First PEP-II CDR.

1993: Second PEP-1I CDR.

1994: Construction started

1997: First HER stored beam 6:30 am June 5.
1998: First LER stored beam 2:49 am July 16.
1998: First collisions 12:05 pm July 23.

1999: BaBar placed on beam line in May.
1999-2008: Collisions for BaBar.

2000: Design luminosity achieved (3x10**) Oct. 29.
2006: Luminosity 1.2x10°* achieved 8 pm Aug. 17.
2008: PEP-II turned off 23:22 pm April 7.

Table 1 : PEP-1I Collision Parameters

. Gain
April Factor
Units | Design| 2008
Parameter over
Best )
Design
I+ mA 2140 3213 x 1.50
I- mA 750 2069 x 2.76
Number 1658 | 1732 x 1.04
bunches
B,* mm 15-25 9-10 x2.0
Bunch mm | 15 10-12 x 14
length
0.05 to
E, 003 | s x 2.0
1034
Luminosity 2, | 0.3 1.2 x 4.0
/em-/s
Intlumin 1= o 5, 911 x 7.0
per day

*Supported by US DOE contract DE-AC02-76SF00515.
‘seeman(@slac.stanford.edu
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PEP-II IR Beam Trajectories
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PEP-Il and BaBar Schematic Drawing

BaBar detector has a full acceptance
but there is a CM boost 9x3.1 GeV.
Separation cone angles for Babar

are 350 mrad forward direction and
400 mrad backward. For PEP-1l B1
Dipole, the cone angle is 300 mrad.
Permanent magnet IR dipoles and
guadrupoles and silicon vertex tracker
(SVT) are mounted in a support tube to
where technicians can connect it
without a “magic vacuum flange”.
BaBar solenoid has field 1.5 T.
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PEP-II IP Optical Lattice Functions (Donald, Garren)

Accelerator optics done with
MAD (Donald, Garren, Helm)
and LEGO (Y. Cai).

IP quadrupole chromatic
corrections were done by
adding beta beats in x and y to
allow the sextupoles to have
smaller strengths.

Dynamic aperture tracking
was done to verify the
beam-stay-clears distances.

Parameter PEP.'-“ PEP-11
Design Present
HER Vertical tune 23.64 2361
HER Horizontal tune | 24.62 24503
LER Vertical tune 36.64 36.59
LER Horizontal tune | 38.57 38.505
HER current (mA) 750 1776
LER current (mA) 2140 2950
Number of bunches 1658 1722
lon gap (%) 5 1.6
HER RF klystron/cav | 5/20 10/26
HER RF volts (MV) 14.0 15.6
LER RF klystron/cav. | 2/4 4/8
LER RF volts (MV) | 34 435
B,* (mm) 15-25 9-10
B.* (cm) 50 40-105
Emittance (x/y) (nm) | 49/2 30-50/0.8
G, (mm) 11 11-12
Lum hourglass factor | 0.9 0.82
Crossing angle(mrad) | 0 <0.05
IP Horiz. size X (um) | 222 160
IP Vert. Size £ (um) | 6.7 6.9
HER Horizontal &, 0.03 0.113
HER Vertical &, 0.03 0.062
LER Horizontal &, 0.03 0.027
LER Vertical &, 0.03 0.047
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Detector magnetic fields near PEP-II

()

O
Permanent magnets were used inside of BaBar. OPERA-2d field calculations.
Outside quadrupoles were steel magnets.

We calculated the solenoid field escaping

outside the central hole using OPERA-2d to see if
the near steel magnets would saturate. OK in end.
Measured fields in the hole were measured.
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PEP-Il conventional quarupole magnets
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Permendur steel
Tie Bars Cooling Hoses Lead Connections

Al of the nearby steel magnets had V‘
to accommodate the two beam chambers.

Prototypes were made and measured
both in the high field region and the
“zero” field region for the adjacent beam.
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PEP-Il Permanent Magnet Design

The permanent magnets in the Beverr B1 Magnet s
IR had three segments: B1 dipole ey Shamber /
first, Q2 dipole+quad second and /.. e =
only a (Q2) quad third. Ll 7 I | ———
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Permanent magnet blocks were made of
Cm,Co,; for strength and radiation
hardness.

Each block was glued to a holder and
manipulated into place. The field harmonics |
were measured and the errors were fixed
by block movements. Once the fields were
good (104 at quad radius) the blocks were
epoxied in place and the fixtures removed.
One ring was made at a time then stacked.
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Solenoid Compensation by Skew Quadrupoles

Solenoid compensation was done by
skew quadrupoles upstream and downstream
of the detector, 12 in LER and 12 in HER.

A rotating mechanical fixture (shown here)
could rotate two PM rings if additional skew
qguad strengths (left+right) were needed.

Table 1. List of old and new skew quad strengths.

Previous skew quad values
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Present skew quad values

KSKI
KSK2
KSK3
K5K4
KSK5A
KSK6A

KSKIL
KSK2L
KSK3L
KSK4L
KSKSAL
KSKeAL

0.806009876244 (pure skew)
-0.173274815633
0.048822132989
-0.041635888106
-0.120312163391
-0.055326692406

-0.227809073954 (pure skew)
0.095793356267
-0.03273305964
0.032536374504
0.104318429692
0.04902251173

0.972818713731(Mag., 0 = 35.97)
-0.186464739573

0.0547721272

-0.039915415564
-0.11662876396
-0.046045943936

0.972818713731(Mag., 8 =-9.1°)
0.103047415341
-0.038225284655
0.032596355015
0.107104279199
0.042797156312




PEP-II IR Be IP Chamber

Be chamber was ~40 cm long.
Two layers: 0.8 mm and 0.4 mm
wall Be tubes with 1.5 mm gap
for de-ionized water cooling with
~1 gpm. Negative H20 pressure
to prevent leak problems.

Be material protected by aircraft
BR-27 epoxy (K. Scarpass-VIiI).
Background protection layers on
Be: 4 microns Au, 7 microns Ni,
7 microns Ni, 75 micron,
tantalum. HOM absorbed nearby.

Bellows and absorber

1 Vacuum Chamber




PEP-Il Near IP Vacuum Chambers

()

IR chambers made of
GlidCop for strength.
Special NEG and radial ion
pumping. 3-D surfaces for
synchrotron power
absorption and to reduce
HOM generation.

HER downstream high
power dump was ~4 m
long tapered copper,
absorbing 90 kW at 1.8 A.

ONFLAT FLANGE (6.75%)
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0.5mm THICK
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Support Tube Assembly

Support tube assembly started with vacuum
chambers, then permanent magnets, Be
chamber, silicon tracker (SVT), all cables, outer
SS cylinders and then carbon fiber central tube. &
All components were alignment during
assembly.
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PEP-II IR Support Tube Installation
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Support tube inserted with long install/withdraw tube.
Tube then removed. Then left and right Q2/Q4/Q5 rafts
were installed.
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IR Raft Layout and Assembly

Q2, Q4, Q5 rafts were assembled in the
shop and then installed by the overhead
crane in the IR hall. These cantilevered
supports were vibration sensitive and much
work was invested in damping them.
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MDI background calculations (Sullivan)
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B aC kg rO U n d SO U rceS SR power on forward QE»mask. S.J.Metcalfe, 8/27/01
. . . Data from MAGBENDS file dated 17 Oct 96
synchrotron radiation, particle %0 1) Radiaon fom Backward s
Iosses’ X-ray Scattering’ beam 20 XwaHt;B ??v::llsme;a:\‘ftlans Distance cm [wicm @1A [w/cm @2A
gas, mask tip scattering. T — T — T e
- o > —r "
o Qpss o N -] N B~ 1
Mitigations: minimize bends, g, — A |
reduce vacuum pressure’ g 2) Radiation from Backward Q1
C0”|mati0n, maSking, Vacuum -10 HEB Power levels at 1A
X watts |Y watts (X + Y watts |Distance cm|w/cm @1A |w/cm @2A
chamber apertures. PPN N N Y I—) —! )
— QD1AQ.26 6.074 1.6 7.674 2.04 3.76. 7.52
Codes used: EGGS4 and * L
MAGBENDS (Sullivan) 50 G o e
=7.5 7.5 [@1 + Q4 Total 1402.92]
meters gyt
@ IRWBS 5 -
(£3m)
1980602rc

Cu mask at 75 cm from the IP
1 A beam current

X(mm)

J 055 Q2 Back Mask Parts 0

-10
Z(meters)




PEP-Il HOM generation and damping (Novokhatski, Heifets)

HOM calculations for the IP
region (Novokhatski code).
IP wakes are in the range of
about 5.3 (HER) + 13.7
(LER) = 19 kW at high
currents. Measured overall
HER HOM total power is
about 2x expected. LER is
about right. Measurements e i e force field tine distribution at the time when a

relatively short bunch has just passed a pipe connection. The red

use the tOtal RF power line shows the bunch line charge density distribution and the
2 bunch trajectory.
versus current. H O |V| <. Table 1: Calculated and Measured HOM Power in PEP-IT
3 1 1 77 & 1 71 LER HER
2900 mA 1800 mA
Vacuum element Power |[KW| Power [KW]
5 RF cavities 63.46 76.16
g Collimators 18.11 16.7
8 Kickers 173 6.08
Screens 1.24 5.5
BPMs 9.4 3.6
e ™| ; | 1 | | IR wakes 13.66 5.26
0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 A : : .
il 5 Figure 1: Collimator generates dipole and c!uadrupole Resistive wall 71.74 36.15
fields after the passage of a 1.3 cm long Gaussian bunch. Total
. These are two snapshots at the same location separated in otal power 195 167
Figure 8: Total HOM power. time. Measured power 210 208 17




PEP-Il Luminosity Measurements (C. Field, M. Sullivan)

Luminosity signal =

e+e- > et+te-y (HERYy)

Ys have energy from 1 to 5 GeV.
y rate is ~1 MHz.

Luminosity was measured in
each of the 1732 bunches to
~few % in 1 second, allowing real
time tuning.

Lou.’u."\, MoniHov
Detechor

¥

A very accurate luminosity

measurement Came from BaBar - uN-umber of hits in cells after 5 X0 at threshold 3. MeV

Entri 2342

600 -

Fast luminosity monitor

400

Fig. 2 Downstream LER - Upstream HER




Dither IP feedback (~20 Hz) (Fisher, Hendricks)
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Figure 2: Sketch of control board for driving a dither magnet, one of eight. : : === .
Figure 1: Low-power air-core coils for sine-wave dither,
one of four installations.
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Earthquake Safety for BaBar and PEP-II

Goal: Protect BaBar and PEP-II from earthquakes.

BaBar is on earthquake isolators.

PEP-II accelerator tied to the ground.

To keep PEP-II from hurting BaBar, two HER and

two LER disposable vacuum links on both sides of BaBar
were made, called “Frangible Links”. Sturdy but compliant!
The allowed motion was +/- 0.3 m before major damage
occurred.
The HER units had a large bore (~ 20 cm) and heavy 2
of order 500 kg. See photos.

. g
7 2
&
® o ; o g
. i NER AN AN K
\ r v :D:’ T
- .
o

|
IS v
|
¥ \\ S—
]‘lr
F= | ST =X =
e
P m i m
|

B

.i_l.‘.._.}l |

01/19/99

20



PEP-II IR Conclusions

()

Major topics for the PEP-II IR:
Needed beam parameters (high currents, low B,*, two rings, no dispersion)
Optics with chromatic corrections
Beam-stay-clears
BaBar-PEP-Il separation angle
Quadrupoles and dipoles designs and inside BaBar
Supports for accelerator components and minimize vibration
Fast luminosity measurement (few % accuracy at ~1 Hz)
Vacuum pumping and pressure
HOM minimization and damping in the IR
Vibration control of FF quadrupoles
Background suppression (beam loss, injection, synchrotron radiation, collimation, masking)
Beam diagnostics
Beam steering
Detector solenoid field measurements and compensation for PEP-I|
Keeping the beams in collisions with dither feedback
Earthquake safety
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