

Matthieu Valette (BNL)

in collaboration with:

A. Drees, G. Robert-Demolaize

J. Bellon, A. Blednyk, C. Hetzel,

S. Seletskiy, N. Tsoupas

US FCC Workshop

Electron-Ion Collider

Context

- The EIC will feature powerful beams
 - 10x the stored energy of RHIC
 - 2x Super KEK-B target stored energy in the ESR with 1/2 the bunches
- Collimators accomplish 2 main missions
 - Beam cleaning to reduce radiation & backgrounds from lost particles
 - Machine & Detector protection from accidental beam loses (CCs, kickers, instabilities, ...)
- Constraints
 - Impedance budget
 - Beam lifetime
 - \$ budget

Introduction

 The e⁻ bunches will be very dense (0.5 mm²) and melt metals in case of normal impact.

- The p+ beam will have similar parameters as the post-LIU SPS.
- Other complexes have reported issues limiting performance:
 - Super KEK-B experienced instabilities causing collimator damage and limiting beam currents.
 - HL-LHC will switch to coated collimators (MoGr) to reduce impedance.

HSR Collimators

- Special constraints:
 - Different loss behavior for protons/ions
 - Cold ring requires good cleaning efficiency in the arcs
 - More flexibility on the optics
- We can benefit from RHIC and LHC experience.
- Planned in IR12 :
 - issues with other users due to radiation
 - switchyard doubles the second secondary
- Momentum collimators are planned for the sector 12 "D7" dummy.

G. Robert-Demolaize

RHIC/EIC IR12 Blue layout w/ switchyard

ESR collimation

 Focus on the 10 GeV case with the most stored energy.

Planned in IR2 & 4 :

- 1 double-sided primary
- 2 double-sided secondary for cleaning and flexibility with phase advances and optics

 Possibility to double each set for redundancy and extra flexibility

Collimators
Quadrupoles
Dipoles
Dump kickers &
Lambertson

3100

3050

3150

s (m)

3200

3250

ESR collimation (continued)

- Electron bunches have a short polarization lifetime (~35 min) and will be replaced every 10 minutes. The ~250 J of the used bunch will be absorbed in-vacuum.
- The Titanium transfer-absorber will be in IR12 with 2 jaws for injection failure cases.
- IR12 is also the location with the largest dispersion and the most suitable for momentum collimation.

Collimation hierarchy

- Imposed by squeezed optics in the IRs
- Retraction from prim -> sec -> aperture based on orbit stability
- Arc is tighter than experiment in the horizontal plane
- Masks upstream of IRs will prevent losses into the focusing quads from showering to the detectors

Optics considerations

- Phase advances :
 - key to protect against kicker failures
 - important to ensure cleaning efficiency with secondaries
 - Orbit/optics will have to be monitored to ensure protection/cleaning
- Orbit stability, β-beat, errors, ... will affect collimations hierarchy and retraction margins.
- Failure case simulations are needed once powering circuits are being finalized.
- We are following developments at KEK-B closely to learn from their experience.

Mechanical design

- The HSR will feature long LHC-like collimators.
 - The jaws will be several meters long and made of amorphous Carbon

- The ESR will feature short KEKB-like collimators.
 - Coated Carbon would benefit energy absorption and impedance.
 - Composite materials are also under consideration (MoGr).
 - All collimators will feature the same design for replaceability.

Tracking simulations

- Xsuite + BDSIM used as a tracking tool.
- Sample loss maps for the ESR are ready and allow design validation.
 - More elaborated simulations will follow, including SR, beam-gas and generation of secondary particles.

Special thanks go to CERN's collimation team : Frederik, Andrey, Pablo and Stefano for their help.

Summary

electron: 6 collimators

Hadrons: 8+1 collimators

there)

+absorbers and masks

H Injection protection (note: not actual inj. location)

Conclusion & Outlook

- Collimation system design :
 - Space, impedance and budget constrains are included to ensure background reduction and protection from failure cases.
 - Global/Local optics requirements are defined for the lattice integrators.
 - IR4 optics are being finalized and moveable mask location conflict need to be ironed-out.
- Tracking simulations :
 - ESR: preliminary loss maps are ready, more detailed studies on cleaning inefficiency and errors are next
 - HSR: pending software functionalities
 - A dedicated simulation sever is being purchased
- Failure simulations will follow once some design parameters are settled.