

Diagnostics and components in the FCC-ee IR

M. Boscolo and J. Keintzel

On Behalf of the FCC-collaboration

US-FCC Workshop
Brookhaven National Laboratory
24th - 26th April 2023

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

Overview FCC-ee

- Present design with ~ 91 km circumference
- 8 long straight sections
- Option of up to 4 Experimental Interaction Regions (EIRs) France

Crossing beams in all IRs

Other long straight sections host:

- Beam Injection (PB)
- Beam extraction (PB)
- RF main rings (PL or PH)
- Collimation (PF)

Must also include

- BPMs
- Wigglers, polarimeter, ...
- Lumical, beamstrahlung dump, ...

Lattice and Optics in EIR

- Most studies with asymmetric EIR design
- Crossing beams
 - Inside outwards → limit to 100 keV photons
 - 30 mrad crossing angle
- Recenty: symmetric EIR design (back-up)

Blue: electrons; red: positrons

Blue: dipoles; red: quadrupoles; green sextupoles

EIR Magnets

- Very complex EIR → possiblity for polarimeter, wigglers, anti-solenoids, correctors, etc.
- 7 different quadrupole families
- Superconducting Final Focus (FF) quadrupoles: QC*
- Superconducting Crab Sextupoles
- BPMs close to the final focus required

Sextupoles for crab-waist transformation
- Aligns waists of beta-functions on
axis of the other beam

- Can limit dynamic aperture

Blue: dipoles; red: quadrupoles; green sextupoles

EIR MDI

- 2.2 m L*
- 10 mm central radius over +/- 9 cm
- 15 mm beam pipe merged 1.2 m before IP

3D view of the FCC-ee EIR until the end of the first final focus quadrupole

- Half-length of 8.4 m until QC1L3
- Inside the detector (6m half length)

Screening solenoid

BPMs in EIR

• About 1 μm resolution (average) and ~10 μm turn-by-turn

Need to distinguish between

• High-intensity colliding bunches (Orbit monitoring,...)

• Low-intensity bunches (MDs, commissioning, ...)

Challenging pick-up BPM installation for final focus

crotch transition

space for vacuum connection

Cryostat shell

- Cold magnet

Cooling

Central

- Warm beam pipe

Bellows

Trapezoidal chamber

- Inside cryostat
- Alignment and long-term stability

Schematic view of BPM pick-ups, aligned 45° wrt tansverse axes

QC1L3

Beamstrahlung

- Dominant process for lifetime limitations
- Photons emitted collinear to beam
- Intense radiation O(100kW)
- Would hit beam pipe → heat, possible damage
- Requires beamstrahlung dump

 ho_{\min} ... bending radius N_p ... bunch population γ ... relativistic gamma σ_x ... hor. Beam size σ_z ... bunch length χ_i ... vert. Beam parameters $\beta_{x,y}$... β -function at IP $\varepsilon_{x,y}$... Transverse emittances

Bunch interacts with force field of opposing bunch, bending radius:

$$\frac{1}{\rho_{\min}} \propto \frac{N_p}{\gamma \sigma_x \sigma_z} \propto \frac{\xi_y}{\sqrt{\beta_x^* \beta_y^*}} \sqrt{\frac{\varepsilon_y}{\varepsilon_x}}$$

Synchrotron photons are emitted with critical energy: $u_c \propto \frac{\gamma^3}{2} \propto \xi_y$

	Total Power [kW]	Mean Energy [MeV]
Z	370	1.7
WW	236	7.2
ZH	147	22.9
Тор	77	62.3

Beamstrahlung Dump

About 400 – 500 m downstream of IP

Possibility to have instrumented beam dump

Will dump all radiation from IP

LumiCal

- Integrated into mechanical model of the MDI
- Standard process is Bhabha scattering and goal is absolute normalization of 10⁻⁴
 - Best so far at OPAL at LEP with 3.4 x 10⁻⁴

LumiCals pushed far inside detector

- only ~ 1 m away from IP

Challenges

- Detector radius controlled 1 μm
- Distance between 100 μm

Wigglers

- Installed in dispersion free section
- 16 m long drift section downstream of IP
- Only required for Z- and W- energy
- Only switched on with ~100 pilot bunches
- No polarization at higher beam energies

Polarimeter

- Main requirements
 - ~ 2 mrad bending dipole
 - ~ 50 m long driftspace
 - ~ 3 m for laser interaction region
- Full-filled upstream of IP in newest optics
- Just before crab-sextupoles
- Alternatively: integration in other IRs

Summary and Outlook

- Long way to finalize design of the EIR region, for example:
 - Engineering of the lumiCal (integration, assembly, support as a whole)
 - Refinement of the detector and environment model for detector backgrounds evaluation
 - Understand and control impact of alignment errors, multipole errors vibration, etc.
 - Integration and design of BPMs
 - Beamstrahlung dump

 EIR mock-up **Regular EPOL meetings:**

indico.cern.ch/category/8678/

Typically every second Thursday 16:30-18:30

Mailing list:

fcc-ee-PolarizationAndEnergyCalibration@cern.ch

Regular MDI meetings:

indico.cern.ch/category/5665/

Typically every second Monday 16:00-18:00

Mailing list:

fcc-ee-mdi@cern.ch

Self-subscription from:

https://e-groups.cern.ch/e-groups/EgroupsSearch.do

Questions?

Diagnostics and components in the FCC-ee IR

M. Boscolo and J. Keintzel

On Behalf of the FCC-collaboration

US-FCC Workshop
Brookhaven National Laboratory
24th - 26th April 2023

* * * * * * * FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

Symmetric EIR

