

Using the H→invisible decay channel for calorimeter benchmarking

Christian Weber, Gabriele D'Amen, Diallo Boye, Kétévi Assamagan, Scott Snyder

April 25th, 2023

Future Circular Collider – e^+e^-

The FCC-ee will allow us to probe electroweak, flavor, Higgs, and Top physics with unrivaled precision.

Targeted Process	Z	ww	H (ZH)	ttbar
Beam Energy [GeV]	45	80	120	182.5
Total Integrated Luminosity	150	10	5	1.5

Particularly motivated by the need to study the Higgs Boson in greater detail

Report of the Snowmass 2021 e⁺e⁻-Collider Forum

Possibly 2045-48 start date – Requires targeted R&D to make the best physics case and achieve optimal physics performance

Higgs

 $H \rightarrow \text{invisible in Standard Model via}$

Standard Model $BR(H \rightarrow inv) = 0.1\%$ But possibly enhanced by BSM physics

$$\mathcal{L} \supset \lambda_{HHS} \phi^2 S + \lambda_{\phi S} \phi^2 S^2$$

Constraints on Higgs coupling modifiers

 $B_{\rm inv.}$ - invisible decays

 $B_{\rm u.}$ - undetected decays

Up to order of magnitude improvement in Higgs coupling precision

Higgs coupling to	HL-LHC [%]	FCC-ee + HL-LHC [%]
ZZ	1.5	0.17
WW	1.7	0.41
$b\overline{b}$	3.7	0.64
$ au^+ au^-$	3.4	0.66
gg	2.5	0.89
$c\bar{c}$	-	1.3
γγ	1.8	1.3
γZ	9.8	10
$\mu^+\mu^-$	4.3	3.9
t ar t	3.4	3.1
$\Gamma_{ m total}$	5.3	1.1

Report of the Snowmass 2021 e⁺e⁻-Collider Forum

Higgs → invisible

Dominant Higgs production mode at FCCee: $ee \rightarrow ZH$

ee-collider advantages for $H \rightarrow \text{invisible}$

- ZH production dominant \rightarrow tag on Z decay
- colliding particles' 4-momenta known
- low pileup environment

$BR(H \rightarrow \text{inv})$ limits at 95% CL:	LHC (300 fb^{-1})	HL-LHC (3000 fb^{-1})	FCCee $(5000 \mathrm{fb^{-1}})$
No systematics	7.5%	2.9%	0.19%
Realistic scenario	17%	6.2%	-
Conservative scenario	22%	14%	-

All limits based on ZH production alone. VBF production @ LHC allows for improved limits

Higgs → invisible measurement

We can reconstruct the Higgs' kinematics from its recoil against Z bosons

$$p_{e^{-}} + p_{e^{+}} = p_{Z} + p_{H}$$

 $\Rightarrow m_{H}^{2} = (2E_{e} - E_{Z})^{2} - \vec{P}_{Z}^{2}$
 $= (240 \text{ GeV } - E_{Z})^{2} - \vec{P}_{Z}^{2}$

- Consider exclusively events where only Z-bosons seem to decay
- Look for resonance around Higgs mass in distribution of recoil masses: *missing masses*

Reconstructed mass distributions

<u>Andrew Mehta, Nikos Rompotis - 6th</u>
FCC Physics Workshop: Higgs to invisible

Detector impact on resolution

ILD-like detector, no beam energy spread

ILD-like detector CMS-like detector

0.12% CoM energy spread

Study the effect of beam energy spread and detector resolution on the search for Higgs boson decays to invisible particles at a future e++e-- circular collider

FCCee detector concepts

- All silicon tracker (pixels+strips)
- Si-W EM calorimeter
 - $22X_0$, 40 longitudinal layers
- Steel-Scintillator hadronic calorimeter
 - SiPM readout
- Solenoid outside calorimeter

- MAPS based vertex detector (1% X₀)
- High-precision low-mass drift chamber with surrounding Si microstrip
- pre-shower with MPGD readout
- Lead-Fiber dual readout calorimeter
 - Scintillating fibers for charged particles
 - Clear fibers for Cherenkov light

Brookhaven MAPS – Monolithic Active Pixel sensors
MPGD – Micro Pattern Gas Detector

Detector Challenges at Future Circular Colliders

Noble Liquid Gas Calorimeters

- Includes a highly granular noble liquid calorimeter
- Possible design being explored are lead/steel absorbers, stacked azimuthally inclined at 50° w.r.t. radial axis with Liquid Argon as the active medium
- Other options under consideration:
 Tungsten absorbers and/or
 Liquid Krypton

H→invisible benchmarking

- Use invisible reconstructed mass resolution in $H \to \text{invisible}$, $Z \to qq$ as benchmark for calorimeter comparison and optimization
- **Preliminary Selection:**
 - Exactly two jets, zero muons, zero electrons
 - Reconstruct *Z* from jets
 - Get invisible mass from Z recoil
 - MET > 10 GeV, 60 GeV $< m_Z < 100$ GeV
- Currently using centrally produced FCCee Monte Carlo samples, reconstructed with the IDEA detector http://fcc-physics-events.web.cern.ch/fcc-physics-events/ FCCee/winter2023/Delphesevents IDEA.php

Missing Mass [GeV]

Invisible mass distribution, based on Higgs→invisible, with $Z \rightarrow jj$ and the Idea detector

Ongoing efforts

- Prepared Monte Carlo event sample production pipelines for CLD and Noble Liquid detectors
 - Currently evaluating produced samples
- Use these to compare invisible mass resolutions between detectors
- Going forward, benchmark variations of calorimeter parameters
- Visit our repository at github.com/BNL-FCCee/BNL-Analyses
- And reach out to us!

The End

Thank you!

