

Z(cc)H at FCC-ee

Elizabeth Brost, Abraham Tishelman-Charny

April 25th, 2023

Introduction: Higgs self-coupling

- We want a precise measurement of Higgs self-coupling:
 - Fundamental test of SM
 - Use to search for variety of BSM physics
- Current estimated precision at HL-LHC:
 ~50% (conservative) w/ Higgs pair production

Estimated precision at FCC-hh: ~5%

ILC_{250}	49%	_	49%
ILC_{500}	38%	27%	22%
ILC_{1000}	36%	10%	10%
CLIC ₃₈₀	50%	-	50%
$CLIC_{1500}$	49%	36%	29%
CLIC ₃₀₀₀	49%	9%	9%
FCC-ee	33%	_	33%
FCC-ee (4 IPs)	24%	_	24%
HE-LHC		15%	15%
*FCC-hh	-	5%	5%

single-H

100-200%

49%

HH

collider

HL-LHC

CEPC240

Sally Dawson, Caterina Vernieri @ LHC Higgs Working Group, December 3, 2021

* arXiv:2004.03505 2.9-5.5% depending on the systematic assumptions

combined

50%

49%

Introduction: Self-coupling at FCC-ee

- HH production turns on at an e⁺e⁻ collider:
 - ~500 GeV for ZHH
 - Even higher for HHvv
- Center-of-mass energy at FCC-ee is too low (240 - 365 GeV) to produce pairs of Higgs bosons directly
- However, we have indirect sensitivity to the Higgs self-coupling from higher order contributions to ZH (main production mode), VBF-H production, and Higgs branching ratios

How to measure the Higgs self-coupling at the FCC-ee?

- The self-coupling measurement depends on measurements of Higgs production cross sections and decays to other particles.
- The κ analysis is expected to reach ~20% accuracy [arXiv:1905.03764], while the global effective field theory fit will reach ~30% [arXiv:1711.03978] (in combination with HL-LHC projections!)
- The ZH cross section (240 GeV run) is most sensitive to changes in the self-coupling
 - 365 GeV run is crucial for reducing uncertainties!

Z(cc)H study

Z(cc)H motivation

 Can we make a better ZH cross section measurement with exclusive ZH studies?

We propose a Z(cc)H study

- Few(er) existing studies with ZH→hadronic
- Excellent test-case for c-tagging improvements (see <u>George's talk</u>) unlikely to suffer from combinatoric problems with (rare) H(cc) decays
- Longer-term plans
 - Use results to aid in detector optimization studies ("what kind of detector will we need to enable this measurement?")
 - Combination with on-going studies in other Higgs channels for final self-coupling constraint
- This is our first time thinking about lepton colliders lots to learn!

Kinematic study: Setup

- Using <u>FCCAnalyses</u> framework
- Analysis configuration files defined in BNL-FCCee GitHub organization
 - ZccH stage1.pv
 - ZccH final.py
 - ZccH plots.py
- Using samples from Winter 2023

campaign:

- Produced by Louis Portalès
- √s = 240 GeV
- WHIZARD event generator
- Delphes simulation of IDEA detector
- Signal: Z(cc)H(exclusive)
- Background: WW, ZZ, qq

BNL-Analyses

Kinematic study: Re-clustering

- Inclusive vs. exclusive jet clustering
 - Inclusive: define size of jets "I want all the jets with some particular ΔR"
 - Exclusive: define number of jets to be clustered "I want three jets"
- Using exclusive jet re-clustering Require <u>four</u> jets per event [targeting Z(cc)H(hadrons)]
- For more jet details, see this excellent talk:
 - [27 June 2022 FCC Physics performance meeting], Matteo Cacciari, Gavin Salam and Gregory Soyez

Same event, two interpretations!

Kinematic study: Jet pair c-score

- Each jet has a c-score assigned
 - "How charm-like is this jet?" from
 0 (not-charm-like) to 1
 (charm-like)
- "Pair c-score": Sum the two c-scores for each of <u>6 jet pairs</u> in the event:
 - o Range: [0, 2]
- Peaks at 2 for events with cc-like jet pairs (expected from Z(cc))
- Peak around 1 indicates:
 - One jet tagged c-like
 - Other jet tagged as not-c-like

Kinematic study: Recoil mass

- Events with:
 - Exactly one dijet pair with c score > 1.8
 - Exactly one dijet pair with recoil mass
 115 140 GeV
 (remember, still <u>6 entries</u> per event)
- Z(cc)H(bb) has highest yield signal peak around 125 GeV
- Z(cc)H(γγ) and Z(cc)H(ττ) peaks are sharp, but lower yield.
- Interestingly, see WW sample peak around 80 GeV
 - Tagging W from W(hadhad)W(X) process?

Kinematic study: Higgs mass

- Same selections, zoom into higgs mass window
- Discernable peak at the Higgs mass from Z(cc)H, but very high background yield.
- Backgrounds have non-peaking structure, can remove with further selections:
 - Require jet pair mass in **Z window** (Reduce W→hadrons background)
 - Add lepton and missing energy rejection (reduce leptonic VV background)

Kinematic study: Signal Higgs mass

- Same selections
- Signal only to look at shape
- Lots of incorrectly reconstructed mass values motivates improved Z(cc) pairing strategy

Summary

- The Higgs self-coupling can be measured indirectly at the FCC-ee, hopefully with higher precision than at the HL-LHC
 - This measurement depends on precise measurements of the Higgs cross sections and branching ratios, using data from runs at several center-of-mass energies
- We are interested in studying ZH→hadronic, starting with Z(cc)H
- We'd love to collaborate with [you]! You can reach us at:
 - elizabeth.brost@cern.ch
 - abraham.tishelman.charny@cern.ch

Backup

What precision do we *need* on the Higgs self-coupling?

- Is 50% enough?
 - Depends which models you would like to study
- Motivates future colliders
 - "The goal for future machines beyond the HL-LHC should be to probe the Higgs potential quantitatively. This requires at least gold quality precision for the self-coupling parameter. ... achievable ... at the highest energy lepton machines (ILC₁₀₀₀ or CLIC₃₀₀₀) and hadron machines
 Brookhave(FCC-hh)"

- Bronze (100%): sensitive to models with the largest new physics effects
- Silver (25-50%): can exclude a physical hypothesis with realistic deviations in the Higgs self-coupling
- Gold (5-10%): sensitive to a broad class of loop diagram effects... could complement measurements on new particles that could be discovered at the HL-LHC.
- Platinum (1%): sensitive to typical quantum corrections to the Higgs self-coupling generated by loop diagrams.

HH White Paper 2018 arXiv:1910.00012

Samples

Winter 2023 campaign:

- o [Link]
- 240 GeV, WHIZARD event generator
- Delphes simulation of IDEA detector

Process	Z(cc)H(bb)	Z(cc)H(WW)	Z(cc)H(gg)	Z(cc)H(ττ)	Z(cc)H(cc)	Z(cc)H(ZZ)	Z(cc)H(88)	Z(cc)H(Z8)	Z(cc)H(ss)	Z(cc)H(µµ)	Z/४ [*] →qq	ww	ZZ
σ*Γ [pb]	0.01359	0.005023	0.001911	0.001464	0.0006747	0.0006164	5.298e-05	3.578e-05	5.607e-06	5.079e-06	52.6539	16.4385	1.35899
σ*Γ / σ*Γ[Z(cc)H(bb)]	1	0.36961	0.140618	0.1077	0.04965	0.04536	3.90E-03	2.63E-03	4.13E-04	3.74E-04	3874.46	1210	100
Events generated	200,000	1,200,000	400,000	400,000	400,000	1,200,000	400,000	400,000	300,000	400,000	100,559,248	373,375,386	56,162,093

Total expected Z(cc)H events with lumi = 5 ab⁻¹:

Total expected qq/WW/ZZ events with lumi = 5 ab⁻¹: 352,256,950

Try to use recoil mass of Higgs peak to separate Signal and background.

Signal yields

- Total yield with No Selections matches expected number: 116,891.83 Highest weighted yields (scaling to be verified):

 Z(cc)H(bb) when tagging a cc pair, w/ recoil mass near Higgs peak
- Tagging a c pair with recoil mass near Higgs has ~ 13.6 42% efficiency

	No Selection	Exactly 4 jets	Ex one jet pair B tagged, near Higgs window	Ex one jet pair C tagged, near Higgs window
Z(cc)H(WW)	25115.000 ± 3.317	25115.000 ± 22.927	12.034 ± 0.502	4897.320 ± 10.124
Z(cc)H(gg)	9555.000 ± 2.335	9555.000 ± 15.108	16.697 ± 0.632	2125.581 ± 7.126
$Z(cc)H(Z\gamma)$	178.900 ± 0.006	178.900 ± 0.283	3.945 ± 0.042	24.364 ± 0.104
Z(cc)H(ss)	28.035 ± 0.000	28.035 ± 0.051	0.001 ± 0.000	8.977 ± 0.029
$Z(cc)H(\mu\mu)$	25.395 ± 0.000	25.395 ± 0.040	0.008 ± 0.001	10.422 ± 0.026
Z(cc)H(ZZ)	3082.000 ± 0.143	3082.000 ± 2.813	80.838 ± 0.456	579.139 ± 1.220
$Z(cc)H(\tau\tau)$	7320.000 ± 1.566	7320.000 ± 11.574	3.916 ± 0.268	2539.271 ± 6.817
$Z(cc)H(\gamma\gamma)$	264.900 ± 0.011	264.900 ± 0.419	0.003 ± 0.001	112.203 ± 0.273
Z(cc)H(cc)	3373.500 ± 0.490	3373.500 ± 5.334	0.152 ± 0.036	972.082 ± 2.863
Z(cc)H(bb)	67950.000 ± 88.563	67950.000 ± 151.941	9201.789 ± 55.913	20429.167 ± 83.312

	Z(cc)H(WW)	Z(cc)H(gg)	$Z(cc)H(Z\gamma)$	Z(cc)H(ss)	$Z(cc)H(\mu\mu)$	Z(cc)H(ZZ)	Z(cc)H(au au)	$Z(cc)H(\gamma\gamma)$	Z(cc)H(cc)	Z(cc)H(bb)
No Selection	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Exactly 4 jets	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Ex one jet pair B tagged, near Higgs window	0.000	0.002	0.022	0.000	0.000	0.026	0.001	0.000	0.000	0.135
Ex one jet pair C tagged, near Higgs window	0.195	0.222	0.136	0.320	0.410	0.188	0.347	0.424	0.288	0.301

Background yields

Total yield with no selection matches expectation:

o **352,256,950**

0.00				
	No Selection	Exactly 4 jets	Ex one jet pair B tagged, near Higgs window	Ex one jet pair C tagged, near Higgs window
qq	$263269500.000 \pm 42479.442$	$261805416.364 \pm 26180.539$	6554221.233 ± 4142.379	4757393.459 ± 3529.180
WW	$82192500.000 \pm 2002.707$	$75993087.167 \pm 4097.205$	13484.571 ± 54.578	1134011.005 ± 500.506
ZZ	6794950.000 ± 315.381	6311147.022 ± 873.827	285306.970 ± 185.792	158321.758 ± 138.402

	WW	ZZ	qq
No Selection	1.0	1.0	1.0
Exactly 4 jets	0.925	0.929	0.994
Ex one jet pair B tagged, near Higgs window	0.000	0.042	0.025
Ex one jet pair C tagged, near Higgs window	0.014	0.023	0.018

Requiring a c-tagged jet pair with a recoil mass near the Higgs removes ~
 77% - 86% of background, but there are large yields left.

Kinematic study: Signal Higgs mass

- See peaks from other final states
- Consistently see Z(cc)H(bb) with highest yield
- Other final states sub-dominant, but peak around 125 GeV.
- Can explore channel dependent kl effects

Kinematic study: Re-clustering

- Using exclusive jet re-clustering Require <u>four</u> jets per event
 - [6 March 2023 FCC Higgs performance meeting], Jan Eysermans, Emmanuel Perez, Michele Selvaggi

Same event, two interpretations!

