FCC-ee
 $H(j j)$ in the $Z(\nu L)$ final state
 Loukas Gouskos, George Iakovidis, Michele Selvaggi
 Andrea Del Vecchio, Alessandro Tricoli, Viviana Cavaliere

Motivation

- At $\sqrt{s}=240 \mathrm{GeV}$ Higgs boson is produced in association with a Z boson \rightarrow measure couplings !
- Use the analysis to study and optimise the tracker design and performance

Handbook of LHC Higgs cross sections arXiv:1610.07922

H Decay	BR $(\%)$ $m_{\mathrm{H}}=125.0 \mathrm{GeV}$
$b \bar{b}$	58.24
$c \bar{c}$	2.891
$s \bar{s}$	0.016
$g g$	8.187
$\tau \bar{\tau}$	6.272

- $\mathrm{BR}(H \rightarrow s \bar{s})$ estimated as
$-\mathrm{BR}[H \rightarrow s \bar{s}]_{\mathrm{SM}} \approx\left(m_{s} / m_{c}\right)^{2} \cdot \operatorname{BR}[H \rightarrow c \bar{c}]_{\mathrm{SM}}$, PDG
$\mathrm{M}_{\mathrm{H}}[\mathrm{GeV}]=\mathrm{BR}[H \rightarrow s \bar{s}]_{\mathrm{SM}} \approx 0.024 \%$ from theorists

National Laboratory

	Process	Cross-section $\left[\mathrm{pb}^{-1}\right]$
Signal	$Z H$	0.2032195
	$Z(\nu \nu) H$	0.046191
	$e^{+} e^{-} \rightarrow Z(\nu \nu) H(b \bar{b})$	0.0269
	$e^{+} e^{-} \rightarrow Z(\nu \nu) H(c \bar{c})$	0.001335
	$e^{+} e^{-} \rightarrow Z(\nu \nu) H(g g)$	0.003782
	$e^{+} e^{-} \rightarrow Z(\nu \nu) H(s \bar{s})$	$1.109 \cdot 10^{-05}$
	$e^{+} e^{-} \rightarrow Z(\nu \nu) H(\tau \tau)$	0.002897
Background	$e^{+} e^{-} \rightarrow Z Z$	1.35899
	$e^{+} e^{-} \rightarrow W^{+} W^{-}$	16.4385
	$e^{+} e^{-} \rightarrow Z / \gamma^{*}(q \bar{q})$	52.6539
	$e^{+} e^{-} \rightarrow Z(\nu \nu) H\left(W^{+} W^{-}\right)$	0.00994
	$e^{+} e^{-} \rightarrow Z(\nu \nu) H(Z Z)$	0.00122
	$e^{+} e^{-} \rightarrow q \bar{q} H, q=u, d, s, c, b$	0.13635

Recoil mass

- At lepton colliders, the recoil mass method can be used to reconstruct the mass of a particle without measuring its decay products
- Most of the $\nu \bar{\nu} H$ events are from $Z H$ process with $Z \rightarrow \nu \bar{\nu}$, while the $W W$-fusion contributes about 13\%
- The signal events have only the jets from the Higgs boson decay. Therefore, if the Higgs decay products are measured, the recoil mass can be turned around to reconstruct the Z mass
- $m_{H}^{2}=E_{H}^{2}-\left|\vec{p}_{H}\right|^{2}=\left(\sqrt{s}-E_{Z}\right)^{2}-\left|\vec{p}_{Z}\right|^{2}=s-2 \sqrt{s} E_{H}+m_{H}^{2}$ and then the recoil mass: $m_{\text {recoil }}^{2}=s-2 \sqrt{s} E_{H}^{\text {rec }}+\left(m_{H}^{\text {rec }}\right)^{2}$
- Offers a way to separate the Higgsstrahlung events with an invisible Z from the WW-fusion events
- Due to finite jet res. beam energy spread and other effects, the recoil mass distribution of the events has a rather large spread
- Can be improved by some jet energy corrections
- Take advance of different shapes of backgrounds to use Z recoil mass in the fit

Dataset

- FCCAnalysis framework used with some standalone analysis scripts
- IDEA Detector (delphes fast sim)
- Training using 9M jets and ParticleTransformer
- Winter2023 samples
- model_dir = "/eos/experiment/ fcc/ee/jet flavour_tagging/ winter2023/
wc_pt_13_01_2022"
- tagger model_name =
"fccee_flavtagging_edm4hep_wc_

Sample	Generator	Events
$e^{+} e^{-} \rightarrow Z(\nu \nu) H(b \bar{b})$	wzp6	$1,200,000$
$e^{+} e^{-} \rightarrow Z(\nu \nu) H(c \bar{c})$	wzp6	$1,100,000$
$e^{+} e^{-} \rightarrow Z(\nu \nu) H(g g)$	wzp6	$1,055,845$
$e^{+} e^{-} \rightarrow Z(\nu \nu) H(s \bar{s})$	wzp6	$1,008,052$
$e^{+} e^{-} \rightarrow Z(\nu \nu) H(\tau \tau)$	wzp6	$1,200,000$
$e^{+} e^{-} \rightarrow Z Z$	p8	$56,162,093$
$e^{+} e^{-} \rightarrow W^{+} W^{-}$	p8	$373,375,386$
$e^{+} e^{-} \rightarrow Z / \gamma^{*}(q \bar{q})$	p8	$100,559,248$
$e^{+} e^{-} \rightarrow Z(\nu \nu) H\left(W^{+} W^{-}\right)$	wzp6	400,000
$e^{+} e^{-} \rightarrow Z(\nu \nu) H(Z Z)$	wzp6	200,000
$e^{+} e^{-} \rightarrow q \bar{q} H, q=u, d, s, c, b$	wzp6	$5,400,000$

Analysis overview

- Signal: $H \rightarrow j j \quad(j=b, c, s, g, \tau)$
- Background:
- WW, ZZ, Zqq, qqH, HWW, HZZ
- Jets reconstruction
- $\mathrm{N}=2$ Durham kt exclusive algorithm
- ParticleNet jet tagger (4 categories: b, c, s, g)
- Analysis
- Events selection (orthogonal to with $Z(l l) H$)
- Categorization based on tagger scores
- Fit to extract uncertainties

Statistics

- Initial yield at (scaled for lumi): $\underline{\sqrt{s}=240 \mathrm{GeV}, \mathscr{L}=5 \mathrm{ab}^{-1}}$

	Before selection
Hbb	$1.34 \mathrm{e}+05$
Hcc	$6.68 \mathrm{e}+03$
Hgg	$1.66 \mathrm{e}+04$
Hss	$5.08 \mathrm{e}+01$
$\mathrm{H} \tau \tau$	$1.26 \mathrm{e}+04$
HWW	$4.80 \mathrm{e}+04$
HZZ	$5.7 \mathrm{e}+03$
qqH	$6.82 \mathrm{e}+05$
WW	$7.99 \mathrm{e}+07$
ZZ	$6.48 \mathrm{e}+06$
Zqq	$2.62 \mathrm{e}+08$

Future CIRCULAR COLLIDER

Cuts

- Cut on lepton $\mathrm{p}\left(<20 \mathrm{GeV}\right.$) (orthogonal to $Z(l l)$ analysis) and $\left|\cos \left(\theta_{i n v}\right)\right|<0.85$
\Rightarrow Suppress leptonic and semi-leptonic and $\nu \bar{\nu} Z(Z \rightarrow q \bar{q})$ backgrounds

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

$m_{j j}$ after initial cuts

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

recoil after initial cuts

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

future CIRCULAR COLLIDER

Yields \& Cut-flow

		Before selection	$p_{\mu}<20 \mathrm{GeV}$	$p_{e}<20 \mathrm{GeV}$	$\left\|\cos \left(\theta_{\text {inv }}\right)\right\|<0.85$	efficiency
$H b b$	Yield $\left(10^{5}\right)$	1.34	1.29	1.23	1.06	0.786
	Sig.	7.169921	7.119619	7.011417	10.945233	
$H c c$	Yield(103)	6.68	6.60	6.53	5.59	0.837
	Sig.	0.357426	0.364260	0.372232	0.577206	
$H g g$	Yield(104)	1.66	1.66	1.66	1.42	0.856
	Sig.	0.888214	0.916168	0.946256	1.466248	
$H s s$	Yield	51	51	51	44	
	Sig.	0.002718	0.002804	0.002896	0.004492	0.856
$H \tau \tau$	Yield(103)	12.6	10.8	9.11	7.75	
	Sig.	0.674187	0.596061	0.519301	0.800241	0.613
$H W W$	Yield $\left(10^{4}\right)$	4.80	4.08	3.40	2.92	0.607
$H Z Z$	Yield $\left(10^{3}\right)$	5.77	5.43	5.08	4.34	0.752
$q q H$	Yield $\left(10^{5}\right)$	6.82	6.27	5.76	4.14	0.607
$W W$	Yield $\left(10^{7}\right)$	7.99	6.37	4.89	2.94	0.368
$Z Z$	Yield $\left(10^{6}\right)$	6.48	5.76	5.08	3.21	0.495
$Z q q$	Yield $\left(10^{7}\right)$	26.2	25.8	25.3	6.06	0.231

$$
S / \sqrt{S+B}
$$

Sum of dijet Scores from the tagger (I)

- B \& C

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

Sum of dijet Scores from the tagger (II)

- S \& G

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

FUTURE CIRCULAR COLLIDER

Score Map

- Events are categorised from the sum of the two jets score
\forall event: $J_{12}^{\text {score }}=J_{1}^{\text {score }}+J_{2}^{\text {score }}, J=b, c, s, g$ eg. if: $J_{1}^{\text {score }}=b \& J_{2}^{\text {score }}=b \Longrightarrow B_{\text {like }}^{\text {score }}$ if $B_{\text {like }}^{\text {score }}>C_{\text {like }}^{\text {score }}>S_{\text {like }}^{\text {score }} G_{\text {like }}^{\text {score }} \Longrightarrow B_{\text {like }}^{\text {event }}$

Categories

- Split the $J_{\text {like }}^{\text {score }}$ in three bins of purity: Low, Medium, High

Hbb_H	78.2337	0.0120914		0.149233	70
Hbb_M	14.573	0.19081	0.000636387	0.516004	
Hbb_L	4.47295	0.249358	0.0552596	1.54695	
Hcc_H	0.000108563	5.	0.00336544	0.163278	
Hcc_M	0.0233409	26.6829	0.144822	0.500256	
Hcc_L	0.19031	4.02539	0.704788	1.96303	60
Hss_H	0.000347739	0.000695478	13.6105	0.237622	
Hss_M	0.0124027	0.105365	48.2817	1.01992	
Hss_L	0.108726	0.714835	28.0139	7.94398	
Hgg_H	0.296197	0.322641	0.0425984	25.3747	
Hgg_M	0.73059	1.22407	1.13998	26.4424	
Hgg_L	0.838027	1.56375	5.97584	36.0492	50
tautau_H		9.15248	0.00560499		
tautau_M	0.53154	40.2424	1.39362		
Itautau_L	4.63953	30.5296	13.1235	0.381762	40
ZZ_H	5.21307	4.60467	0.972385	0.274717	
ZZ_M	12.7687	12.1736	7.40309	1.25876	
ZZ_L	9.25005	8.80219	19.3612	17.9175	
WW_H	0.000685094	1.8692	0.121344	0.213696	30
WW_M	0.0733202	12.3557	4.35771	1.12064	
WW_L	2.65113	28.7318	27.1621	21.3426	
Zqq_H	7.71798	12.1961	0.901308	0.305979	
Zqq_M	3.09943	9.78434	7.59515	0.780274	
Zqq_L	5.94241	10.1424	29.5582	11.9764	
HWW_H	0.00937367	1.58628	0.028121	0.672348	20
HWW_M	0.418833	14.7256	1.21133	3.43758	
HWW_L	5.91734	29.6089	12.8487	29.5356	10
HZZ_H	7.76473	4.5994	0.595125	0.472868	
HZZ_M	12.1379	10.2759	5.9365	2.78732	
HZZ_L	5.89715	5.86904	20.2659	23.3982	
qqH_H	5.47328	0.894871	0.0241659	1.07139	0
qqH_M	47.3425	7.95693	0.696082	2.7133	
qqH_L	12.2725	6.85897	3.03734	11.6586	
	B	C	S	G	
prediction					
Tagger efficiency talk here 14					

Fit Categories \& Signal extraction

- For the fit the HiggsAnalysis-CombinedLimit was used (within CMSSW - http://cms-analysis.github.io/HiggsAnalysisCombinedLimit/ (open access)) along with CombineHarvester (http://cms-analysis.github.io/CombineHarvester/)

Conclusions

- Able to reproduce the full analysis of $H(j j)$ in the $Z(\nu \nu)$ final state
- Results look reasonable
- Looking forward to get some more experience with the tagger and study the performance in different categories (u, d is coming check here)
- Will be looking into the full hadronic final states
- We are interested to study the tracker performance in order to optimise the design and requirements for these physics cases
- We are looking for the best possible ways to collaborate and contribute to the existing effort CIRCULAR
COLLIDER

