IDEA DETECTOR CONCEPT

PATRIZIA AZZI - INFN-PD
For the RD-FCC INFN IDEA R&D Effort

Many thanks to my colleagues for the material: F. Bedeschi, N. De Filippis, G. Gaudio, P. Giacomelli, M. Lucchini, F. Palla, I. Vivarelli, etc.etc.

NEXT COLLIDER, FCC-ee

> Physics goals:

- Massively improve the knowledge of SM and Higgs to strengthen the basis for further exploration
- Explore a new phase space for new physics search and extension of flavour measurements
- > Totally new machine and challenges for detectors and physics
 - > Can redo LEP program in few minutes (and with much better detectors)
- > Up to four detectors to exploit the vaste physics program
 - ➤ Possibility to focus on different aspects (as it was done for LHC)

THE UNIQUENESS OF FCC-ee

With respect to linear collider's 1st stage

Precise and continuous \sqrt{s} , \sqrt{s} spread, boost determination

Both with resonant depolarisation (RDP) and with collision events in up to four detectors Essential for precision measurements

EXPERIMENTAL CHALLENGES

See talk by M. Boscolo

> 30 mrad beam crossing angle

- Detector B-field limited to 2 Tesla at Zpeak operations
- ➤ Tightly packed MDI region

➤ Bunch spacing down to 20ns

- ➤ Or less with 4IPs
- Power management and cooling (no power pulsing)

> Extremely high luminosities

- ➤ High statistical precision control of systematics down to 10-6 level
- ➤ Online/offline handling of O(10¹³) events for precision physics

> Physics events at up to 100 kHz

- ➤ Detector response ≤ 1 μs (and faster!) to minimise dead-time and event overlaps (pile-up)
- Strong requirements on sub-detector front-end electronics and DAQ systems keeping low material budget

PHYSICS & DETECTOR REQUIREMENTS HIGGS/EW/TOP

M. Dam

"Higgs Factory" Programme

- At two energies, 240 and 365 GeV, collect in total
 - 1.2M HZ events and 75k WW → H events
- Higgs couplings to fermions and bosons
- Higgs self-coupling (2-4 σ) via loop diagrams
- Unique possibility: measure electron coupling in s-channel production e⁺e⁻ → H @ √s = 125 GeV

Ultra Precise EW Programme & QCD

Measurement of EW parameters with factor ~300 improvement in *statistical* precision wrt current WA

- 5x10¹² Z and 10⁸ WW
 - m_z , Γ_z , Γ_{inv} , $\sin^2\theta_W^{eff}$, R_ℓ^Z , R_b , α_s , m_W , Γ_W ,...
- 10⁶ tt
 - m_{top}, Γ_{top}, EW couplings

Indirect sensitivity to new phys. up to $\Lambda=70$ TeV scale

DETECTOR REQUIREMENTS

- Momentum resolution at $p_T \sim 50$ GeV of $\sigma_{pT}/p_T \simeq 10^{-3}$ commensurate with beam energy spread
- Jet energy resolution of 30%/VE in multi-jet environment for Z/W separation
- Superior impact parameter resolution for c, b tagging

DETECTOR REQUIREMENTS

- Absolute normalisation (luminosity) to 10⁻⁴
- Relative normalisation (e.g. $\Gamma_{had}/\Gamma_{\ell}$) to 10^{-5}
- Momentum resolution "as good as we can get it"
 - Multiple scattering limited
- Track angular resolution < 0.1 mrad (BES from $\mu\mu$)
- Stability of B-field to 10⁻⁶: stability of √s meast.

...are these requirements enough to design our best detector?

FCC-ee AT THE INTENSITY FRONTIER

- ➤ TeraZ offers additional pillars to the FCC-ee Higgs/EW/Top physics programme:
 - ➤ Flavour: Enormous statistics 10¹² bb, cc, Clean environment, favourable kinematics (boost), extend/complement reach of Belle2 and LHCb
 - ➤ Tau: Enormous statistics: 1.7 10¹¹ ττ events. Much improved measurements of mass, lifetime, BR's
 - ➤ **BSM/Feebly coupled Particles:** directly observe new feebly interacting particles below m_{Z.} Difficult signatures, including LLP's, but also Axion-like particles, Dark photons, Heavy Neutral Leptons and ultra-rare Z (and W) decays,

Flavour physics programme

- Formidable vertexing ability; b, c, s tagging
- Superb electromagnetic energy resolution
- Hadron identification covering the momentum range expected at the Z

More case studies will lead to more detector requirements

Tau physics programme

- Momentum resolution
 - •Mass measurement, LFV search
- Precise knowledge of vertex detector dimensions
 - •Lifetime measurement
- Tracker and ECAL granularity and $e/\mu/\pi$ separation
 - •BR measurements, EWPOs, spectral functions

Rare/BSM processes, e.g. Feebly Coupled Particles

- Sensitivity to far-detached vertices
- Tracking: more layers, continuous tracking
- Calorimetry: granularity, tracking capability
- Extended detector volume
- Full acceptance ⇒ Detector hermeticity

FCC-ee AT THE INTENSITY FRONTIER

- ➤ TeraZ offers additional pillars to the FCC-ee Higgs/EW/Top physics programme:
 - ➤ Flavour: Enormous statistics 10¹² bb, cc, Clean environment, favourable kinematics (boost), extend/complement reach of Belle2 and LHCb
 - ➤ Tau: Enormous statistics: 1.7 10¹¹ ττ events. Much improved measurements of mass, lifetime, BR's
 - ➤ **BSM/Feebly coupled Particles:** directly observe new feebly interacting particles below m_{Z.} Difficult signatures, including LLP's, but also Axion-like particles, Dark photons, Heavy Neutral Leptons and ultra-rare Z (and W) decays,

Flavour physics programme

- Formidable vertexing ability; b, c, s tagging
- Superb electromagnetic energy resolution
- Hadron identification covering the momentum range expected at the Z

More case studies will lead to more detector requirements

Tau physics programme

- Momentum resolution
 - •Mass measurement, LFV search
- Precise knowledge of vertex detector dimensions
 - •Lifetime measurement
- Tracker and ECAL granularity and $e/\mu/\pi$ separation
 - •BR measurements, EWPOs, spectral functions

Rare/BSM processes, e.g. Feebly Coupled Particles

- Sensitivity to far-detached vertices
- Tracking: more layers, continuous tracking
- Calorimetry: granularity, tracking capability
- Extended detector volume
- Full acceptance ⇒ Detector hermeticity

If all these constraints are met, Higgs and top programme probably OK (tbc)

IDEA (Innovative Detector for e+e- Accelerator)

IDEA CONCEPT DETAILS

- Tracking →150 mrad
 - No material in front of luminometer
- Calorimetry →100 mrad

- Based on MAPS technology, using the ARCADIA R&D program
 - new layout being developed, more realistic wrt the CDR version
 - > Profiting of the small beam pipe D~2cm, covering $cos\theta < 0.99$
 - ➤ Very light: Total thickness per layer ~0.25% X₀
- ➤ Simulation and Performance of the new layout in progress, but won't be much different from baseline:
 - ►Point resolution $\sim 3\mu m$
 - ➤~100% efficiency and very low fake rate

VERTEX DETECTOR

Vertex detector (ARCADIA DMAPS)

- * Modules of 25 \times 25 μ m²pixel size
- * 3 barrel layers at: 13.7, 22.7 and 33 mm radius

Outer tracker:

Modules of $50 \times 150 \,\mu\text{m}^2$ pixel size (ATLASPIX3)

- Intermediate barrel layer at 13 cm radius (improved reconstruction for $p_T > 40 \ MeV \ tracks$)
- Outer barrel at 31.5 cm radius
- 3 disks per side

DRIFT CHAMBER

- **➤ Extremely transparent Drift Chamber**
 - ➤ Gas: 90% He 10% iC₄H₁₀
 - ➤ Radius 0.35 2.00 m
 - ➤ Total thickness: 1.6% of X₀ at 90°
 - ➤ Tungsten wires dominant contribution
 - ➤ 112 layers for each 15° azimuthal sector
 - max drift time: 350 ns

BES inherent to the machine. ~ 0.16% at 240 GeV (~ 0.13% at the Z)

Ideally: σ(p) / p ≈ rel. BES

- Z or H decay muons in ZH events have rather small p_T
 - Transparency more relevant than asymptotic resolution

SILICON WRAPPER & MAGNET

Silicon Wrapper between Drift Chamber and Solenoid

- ➤ Provides 3D information at the exit point of the Drift Chamber (improves momentum resolution)
- Silicon with timing capabilities can help the PID (such as π/K separation around 1GeV and above)
- ATLASPix3 baseline, LGAD technology an option under study

➤ Ultra light 2T solenoid:

- ➤ Radial envelope 30 cm
- Single layer self-supporting winding (20 kA)
 - **Cold mass:** X_0 = 0.46, λ = 0.09
- > Vacuum vessel (25 mm Al): $X_0 = 0.28$
 - Can improve with new technology
 - ightharpoonup Corrugated plate: $X_0 = 0.11$
 - \rightarrow Honeycomb: $X_0 = 0.04$

Courtesy of H. TenKate

TRACKING SYSTEM SIMULATION & PERFORMANCE

See talk by M. Selvaggi on Delphes

- > Delphes provides the response of a multipurpose detector in a parameterised way
- ➤ Addition of several ORIGINAL features and tools to the official Delphes code:
 - Full covariance matrix description for tracks: possibility to study in detail detector configurations (position of Silicon layers) even in FastSim
 - ➤ Vertexing: for primary and secondary vertexing with external constraint and track addition/removal feature. Also treatment of Long lived particles.
 - ClusterCounting: returns the cluster info given a volume crossed (stand-alone), returns a track complete with cluster information in Delphes output
 - Tuning of electron resolution: study of resolution of electron tracks in IDEA to tune the Delphes parameterization
 - Full simulation description with G4 being ported to DD4HEP geometry
 - Full simulation of new developments/components to be implemented. Lots of possibilities to collaborate

TRACKING REQUIREMENTS: HIGGS MASS AND CROSS SECTION

DELPHES BASED STUDY

2107.04509

$$e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$$

$$m_{\text{recoil}}^2 = (\sqrt{s} - E_{l\bar{l}})^2 - p_{l\bar{l}}^2 = s - 2E_{l\bar{l}}\sqrt{s} + m_{l\bar{l}}^2$$

Recoil mass affected by:

- The beam energy spread
- The momentum resolution (and the ISRs for the tail)

Higgs mass measurement:

$$\Delta(m_H) < O(\Gamma_H)$$
 i.e. 4 MeV desirable in view of $e^+e^- \to H$

Main TK	Δm _H (MeV)	Δσ (%)
IDEA 2T	6.70	1.07
CLD 2T	9.01	1.12
IDEA 3T	5.78	1.06
Perfect	4.75	1.04

PARTICLE IDENTIFICATION CAPABILITIES (PID)

K from B°

Essential for flavour physics / spectroscopy

PID needed in a large momentum range!

- Suppress backgrounds e.g. $B_s \rightarrow D_s K$, p(K) extends up to 30 Gev
- Time-dependent CP asymmetries: need to tag the flavour (B or Bbar) of the meson at production.
 - Use charge of 'opposite-side'
 Kaon (b → c → s) : p(K) very soft

Typically exploit ionisation energy loss and time-of-flight. Space constraints for a RICH, but ideas / work ongoing.

- Very useful for tau physics
 - e.g. determination of B($\tau \to v \, \pi$), B($\tau \to nu \, K$) hence V_{us} independent of lattice predictions
- Input to jet flavour tagging (strange tagging)

30 ps assumed resolution for timing detector

- ➤ Expect > 3σ K/π separation from Cluster Counting in Drift Chamber up to ~30 GeV
 - ➤ ToF at <100 ps resolution covers the region around 1 GeV

VERTEXING REQUIREMENTS (AND MORE): HIGGS COUPLINGS TO b/c/s-

QUARKS AND GLUONS 2202.03285

New document in progress for mid-term report

- ➤ A must for any Higgs factory
 - Precise measurement of all Higgs couplings to ff, VV
 - ➤ H(cc), H(gg) won't be measured at HL-LHC
- ➤ Flavour tagging is the key
 - ➤ Algorithms based on state-of-the-art advanced Neural Networks
- **➤** Requirements on Detector:
 - Position of innermost layer of vertex
 - ➤ Particle ID capabilities (timing?)
- ➤ Beauty of a ML Tagger is the ability to "evolve" to include more capabilities (taus, U, D categories etc...)

Final states:

Benchmarks for flavour tags

Z(II) H(qq): clean, use the recoil mass again

Z(vv) H(qq): probably drives the sensitivity

 Z(qq) H(qq): performance depends in addition on jet pairing, see later

BNL April 25th 2023

patrizia a

DUAL READOUT CALORIMETRY

Alternate

Cherenkov fibers
Scintillating fibers

~2m long capillaries

➤ Measure simultaneously:

- Scintillation signal (S)
- ➤ Cherenkov signal (Q)
- ➤ Calibrate both signals with electrons
- ➤ Unfold event by event f_{em} to obtain corrected energy

$$S = E[f_{em} + (h/e)_S (1 - f_{em})]$$

$$C = E[f_{em} + (h/e)_C (1 - f_{em})]$$

$$E = \frac{S - \chi C}{1 - \chi} \quad \text{with: } \chi = \frac{1 - (h/e)_S}{1 - (h/e)_C}$$

Newer DR calorimeter layout (bucatini calorimeter)

Scintillation fibers

Cherenkov fibers

() FCC

DUAL READOUT CALORIMETER SIMULATION

Geant4 Geometry

 4π detector FullSimulation (G4) tuned to RD52 test beam data

Tower segmentation: $\Delta \vartheta = 1.125^{\circ}$, $\Delta \varphi = 10.0^{\circ}$ Number of towers in barrel: $40 \times 2 \times 36 = 2880$ Number of towers per endcap: $35 \times 36 = 1260$ Theta coverage up to ~ 0.100 rad

DD4HEP geometry: allows "plug&play" of different components: here the DR is paired with the CLD silicon tracker

DR CALORIMETER PERFORMANCE

- Good resolution averaged over η and φ
- > Jet resolution:
 - > ~30-40%/ \sqrt{E} separates W, Z, H in 2-jet decays
- **EM** resolution:
 - > ~ 10-15%/ \sqrt{E} ok for Higgs physics
 - ➤ ~3% more appropriate for HF
- Transverse granularity <1cm for π⁰ from τ and Heavy Flavor
- All electronics in the back to simplify cooling and services
- Ultimate angular resolution using single fibre ...

CRYSTAL ECAL OPTION CONCEPTUAL LAYOUT

See talk by Wonyong Paul Chung

- Transverse and longitudinal segmentation optimized for particle identification and particle flow algorithms
- Exploiting SiPM readout for contained cost and power budget

bckgd

EM CRYSTAL OPTION PERFORMANCE

Including the neutral decays in the reconstruction drives the ECAL resolution

$D_s^+K^-$	$D_s^+ \to \phi \pi$	$K^{+}K^{-}\pi^{+}K^{-}$	$\sim 5.2 \ 10^5$
$D_s^+K^-$	$D_s^+ \to \phi \rho$	$K^{+}K^{-}\pi^{+}K^{-}\pi^{0}$	$\sim 9.8 \ 10^5$

2107.02002

Assuming state-of-the-art calorimeter with

 $\frac{\delta E}{E} = \frac{0.03}{\sqrt{E}} \oplus 0.005$

Assuming **HGCal like** calorimeter with

 $\frac{\delta E}{E} = \frac{0.15}{\sqrt{E}} \oplus 0.005$

State-of-the-art Xtal-type to HGCal-type : $\sigma \left(D_s^\pm (\phi \rho^\pm) K^\mp\right) \approx 14 MeV \rightarrow 51 MeV$

- Improved EM energy resolution very important for jets and flavour/taus
- ➤ EM granularity also very important for flavor/taus and BSM physics to distinguish close-by photons

Jet angular resolution (φ)

0.01mrad

MUON DETECTORS

Barrel Muon

Proposing to use a μ-RWELL* technology

- Concept proved and synergetic with LHC
- Mass production/Optimization of FEE channels/cost
- > Efficiency > 98% & Space Resolution < 400 μm

Muon Detector:

- > 50x50 cm2 2D tiles to cover more than 4330 m², Muon
- pitch = 1.5 mm, FEE capacitance = 270 pF, 5M channels

> Pre-Shower:

- pitch = 0.4 mm, FEE capacitance = 70 pF, 1.5M channels
- High spatial resolution between magnet and calorimeter
- ➤ Full Simulation description in progress

INFN FCC DETECTOR R&D EFFORTS

- Structured detector R&D efforts with additional contributions from funds outside INFN and/or synergies:
 - ➤ Tracking detectors
 - Vertex pixel detector: ARCADIA
 - ➤ Silicon wrapper: AtlasPix3 International collaboration
 - Drift chamber design and cluster counting study
 - ➤ Synergy with MEG2 chamber and Tau-charm factory R&D
 - > Muon chambers: μRwell technology synergy with LHCb upgrades
 - ➤ Calorimeter
 - DR calo new mechanical & electronics solutions Digital SiPMs and full containment prototype International collaboration
 - > ECAL Crystal International collaboration (Calvision)
 - Many contributions in European projects such as AIDAInnova and ECFA DRDs

FINAL COMMENTS

- ➤ IDEA represent the effort to develop a new detector concept for FCC-ee able to fully exploit it's physics potential
 - with particular attention on the new opportunities offered by the Tera-Z program for flavour and BSM
- ➤ INFN has setup a complete R&D effort but resources for future projects are limited
 - People are involved in running/approved experiments and can devote only a small fraction of time
 - > Additional collaborators are welcome in all areas: from hardware R&D to software
 - Many new ideas waiting to be pursued further or not really explored yet
 - Current IDEA description is a baseline that should evolve
- Expanding our international collaboration is our goal
 - > Open to synergies with the US community on this and other detector concepts

BACKUP

FCC-ee PHYSICS PROGRAMME WITH 2 IPs AND 15 YEARS

hadron identification

Programme optimally done

with circular collider's first stage

Slide from C. Grojean @ FCC Week'22

detector req.

25

Programme also accessible

to linear collider's first stage

SOME DIFFERENCES WITH ILC/CLIC

- > Different beam time structure:
 - > Short bunch spacing (~20 ns @Z, ~1 μ s @H, ~ 3 μ s @ $t\bar{t}$)
 - No large time gap
 - Cooling issues for PF calorimeter and vertex detector
 - > TPC ion backflow
- Detector solenoid field strength constrained by beam emittance preservation at IR (~ 2T preferable)
 - ➤ TPC: issues with transverse diffusion
 - > Silicon: can't compensate smaller tracking radius with large field
- > Luminosity is much higher
 - ➤ Non-negligible machine backgrounds
 - > Fast detector integrates less background in each readout

Detector performance impact

- Last meeting: only showed Hadronic resolution and IP
 - Today also time-of-flight and dNdx
- Neutral Hadron resolution (affects m_{jj}, m_{recoil}) Impact parameter resolution (affects tagger performance)

Caveat: IP variations pessimistic (tagger not retrained)

Detector performance impact

- Last meeting: only showed Hadronic resolution and IP
 - Today also time-of-flight and dNdx
- Neutral Hadron resolution (affects m_{jj}, m_{recoil}) Impact parameter resolution (affects tagger performance)

Caveat: IP/ToF/dNdx variations pessimistic (tagger not retrained)

