

9m

The IDEA detector concept calorimeter system

Iacopo Vivarelli University of Sussex

On behalf of the IDEA detector concept

5_m

IDEA (Innovative Detector for Electron-positron Accelerators)

Key points:

- Silicon VTX detector plus ultra-low material drift chamber.
 - Minimised multiple scattering for momentum range of interest.
 - Thin solenoid in front of the calorimeter.
- Single, dual-readout calorimeter for EM and HAD calorimetry.
 - Option to have a crystal, dualreadout EM section.
- **Pre-shower** and **muon spectrometer** based on µ-Rwell technology.

See overview talk from P. Azzi

See also <u>here</u> for additional information

Dual readout calorimetry

- Non-compensating calorimeters: response to empart different from that to non-empart. h/e < 1.
- <f_{em}> energy dependent \Rightarrow Non-linear calorimeter response to hadrons.
- •<fem> fluctuations largely determine energy resolution ⇒ sampling the hadronic shower with two calorimeters with different e/h boosts energy resolution.
- For a review about dual readout calorimetry, please see <u>S. Lee, M. Livan, R. Wigmans, Rev. Mod. Phys. 90, 025002</u>.

$$E_C = E\left(f_{\text{em}} + \left(\frac{h}{e}\right)_C (1 - f_{\text{em}})\right)$$

$$E_S = E\left(f_{\text{em}} + \left(\frac{h}{e}\right)_S (1 - f_{\text{em}})\right)$$

$$E = \frac{\left(E_S - \chi E_C\right)}{1 - \chi}$$

IDEA full simulation

- G4 simulation of IDEA calorimeter:
 - For the calorimeter: Cu absorber, 1 mm fibers, 1.5 mm pitch.

• 130 M fibers channels:

- Excellent angular resolution, lateral shower shape sensitivity (if full granularity is retained).
- No longitudinal segmentation out of the box.
- Full simulation including drift chamber and solenoidal magnetic field available
 - Already based on edm4hep. Integration with DD4hep ongoing.
 - See https://github.com/HEP-FCC/
 IDEADetectorSIM.

Full simulation performance in a nutshell

All plots taken from https://arxiv.org/pdf/2203.04312.pdf

Longitudinal segmentation via timing

- Assume to read out full signal from SiPM sampled at 10 GHz.
 - Full SiPM response integrated in simulation/digitization output.
- FFT of signal yields individual fiber hits and highprecision (< 100 ps) timing.
- Unlocks **full longitudinal information** about energy deposit.
- Combined with dual readout information allows in-shower cluster identification.
- See <u>S. Kho's talk</u> at Calor 2022.

Bucatini calorimeter

- Basic calorimeter unit: **one brass capillary tube** of 2 mm external diameter **hosting a fiber** (1 mm diameter).
- EM-size prototype (10x10x100 cm³) put on beam (twice) in 2021.
 - 9 modules, each 16 x 20 capillary tubes.
- Readout:
 - M0 read with SiPM (one per fiber).
 - M1-8 read by 2 PMT each (one for Cherenkov, one for Scintillating fibers).

Hamamatsu SiPM: S14160-1315 PS Cell size: 15 μm

TB calibration procedure

 SiPM equalisation obtained with multiphoton spectrum plus intercalibration of high and low gain.

- After calibration with electrons, linearity within 1% over a wide range of enegies.
- Excellent lateral shower shape development measurements.

Not just bucatini

Copper Plate & Fibers

- Copper plate (60)

Width: 10 cmLength: 2.5 m

Thickness: ~1.6 mmHole: 1 mm (diameter)

- Distance between hole: ~ 0.63 mm

Configuration of Fibers & Readout detector for Test Beam

Module #2 (3x3)

Module#2			
Tower#1	Tower#2	Tower#3	
Tower#4	Tower#5	Tower#6	
Tower#7	Tower#8	Tower#9	

Madula#0

Combination of fibers for Module#1

	Tower #1	Tower #1 Tower #2 To		Tower #4	
Scintillation fibers	Round Round / Single cladding Double cladding		Round / Single cladding	Square / Single cladding	
Cherenkov fibers	Round / Single cladding	Round / Single cladding	Round / Single cladding	Round / Single cladding	
Readout detector (2*4 ch)	2 PMTs	2 PMTs	2 MCP-PMTs	2 PMTs	

Combination of fibers for Module#2

Combination of fibero for infoation2			
	Tower #1~4 and #6~9	Tower #5	
Scintillation fibers	Round / Single cladding	Round / Single cladding	
Cherenkov fibers	Round / Single cladding	Round / Single cladding	
Readout detector (400+16 ch)	16 PMTs	400 SiPMs	

Dual readout with crystals

- •LYSO (1 X₀ timing layer) + 2 layers of PWO (1x1 cm²) inside the IDEA solenoid.
- Crystals read out by SiPM:
 - Dual readout obtained with separation in frequency of Cherenkov light.
- High energy resolution for the EM section, adds natural longitudinal segmentation.
- Hadron calorimeter unchanged with respect to **fiber-only configuration**.

Taken from https://doi.org/10.1088/1748-0221/17/06/P06008

Crystal + fibre calorimeter - results

- Performance studies done on events with jets for a few different configurations:
 - No dual-readout (DRO) no Particle Flow Algorithm (PFA) applied.
 - With DRO but no PFA.
 - With DRO and PFA.
- DRO recovers linearity of the calorimeter response and improves resolution. PFA further boosts resolution.
 - 4.5% at 50 GeV within reach.

The future: prototype with hadronic containment

A truly international effort

- Funding for Dual-readout-connected activities:
 - AIDAinnova partially supports activities related to R&D for fiber/ optics/SiPM + monitoring + simulation studies for fibre calorimeter.
 - Significant (o(1 M) currency units each) from DoE for crystal-DRO,
 Korea and INFN for fibre calorimeter full containment efforts.

Summary

- IDEA implements a fibre dual-readout calorimeter as default option:
 - Good EM energy resolution, excellent lateral shower shape and position determination. Excellent hadronic energy resolution.
 - Proof of principle of longitudinal shower shape sensitivity through timing
 - EM-size capillary tube (Bucatini) prototype tested on beam in 2021. Different mechanical options
 + full extraction of SiPM signal tested on beam in 2022.
 - Toward the development of a fully scalable hadronic-size prototype (mainly INFN and Korea).
- Crystal EM-section promises to deliver **excellent EM energy resolution** and performance **while boosting hadronic performance** (via intrinsic longitudinal segmentation and PF).
- The international effort for Dual Radout at ete-colliders is growing:
 - Three large grants + AIDAinnova will support the R&D over the next future.
- Plenty of ideas and room for further collaboration:
 - If you are interested: Subscribe on <u>egroups.cern.ch</u> to <u>idea-dualreadout@cern.ch</u>.

Backup

Dual readout calorimeter at work

connected to 1 FERS

□ Each SiPM is individually qualified: crucial for the system commissioning

Grouping board

The Mini-Module

1 FERS serves 64 front-end boards with grouping

- □ Each bar of SiPMs will be operated at the same voltage (ΔV_{bd} <0.15V)
- ☐ The signals from 8 SiPMs are summed up in the grouping board

- Compare electron and pion shower shapes (20 GeV)
- Consider also **Time of arrival** of signal to SiPM (fiber propagation and SiPM + electronics time response parametrised in full sim)
- Combined performance: $\varepsilon = 99.5\%$, fake ~1%

Advanced Machine Learning Applications

Some advanced applications on object reconstruction and identification are proceeding in parallel to the analytical approach. Some examples: tau lepton decays identification.

Data preprocessing needed to reduce data size and fit GPU memory

- Signals from fibers in each 1.2x1.2 cm² module are integrated to obtain a 111x111 matrix
- •5 information used for each matrix element: signal integral, signal height, peak position, time of crossing threshold and time-over-threshold
- •Independently done for scintillation and Cherenkov fibers
- Each event is a 111x111x10 tensor

0	pi0 pi- nu_tau
1	e- anti_nu_e nu_tau
2	mu- anti_nu_mu nu_tau
3	pi- nu_tau
4	pi- pi- pi+ nu_tau
5	pi0 pi0 pi- nu_tau

Single hadron response - linearity

NIM A 866 (2017) 76

 Dual readout signal largely recovers linearity while vastly improving resolution.

Shower shape

- Single particle shower shape
 - Using full implemented granularity

How events look like (full granularity)

- The use of the **single fibre granularity** yields the ultimate angular resolution of the calorimeter.
- Position obtained as the energy-weighted fibre mean

• Fit with
$$\sigma(\text{rad}) = \frac{p_0}{\sqrt{E(GeV)}} + p_1$$

50 GeV electrons

- Light yield chosen according to TB results
- After tower equalisation, energy deposited by electrons used as pe/GeV calibration factor

40 GeV electrons - S channel

70 | Mean x 50.04 | Mean y 50.1 | Mean y 50.

40 GeV electrons - C channel

$H \rightarrow \gamma \gamma$ as a photon candle

- •Using 5M $e^+e^- \to ZH \to \nu\nu\gamma\gamma$ events and clustering opposite calorimeter hemispheres as photons.
- Dedicated calibration corrections for impact point on tower

- Using tower granularity (estimated use of full granularity further improves mass resolution by 20%)
- Combined mass resolution2 GeV

Single pion response

Jet response

- Studied in di-jet events so far (reconstructed with ee_genkt algorithm in two exclusive jets)
- Separately reconstructing S, C and truth-level jets.
- Event cleaning: central jets only considered; reject events with muons or neutrinos or poor containment.
- Two options considered (with and without 1X₀ of additional "tracker" material):

Calo only

$$E_j^r = \frac{E_j^s + \chi E_j^c}{1 - \chi} + \text{dedicated calibration}$$

Calo + charged

$$E_j^{r*} = E_j^{ch} + E_j^s - \frac{E_j^s E_j^{ch}}{E_j^r} + \text{dedicated}$$

calibration

(Sum charged component and total energy, then correct for double counting)

Jet response

Dual readout achieves linearity with a resolution of 30%/ \sqrt{E} with constant term ~ 0.5%

Resonances studied with

$$e^{+}e^{-} \rightarrow ZH \rightarrow jj\tilde{\chi}_{0}^{1}\tilde{\chi}_{0}^{1}$$

 $e^{+}e^{-} \rightarrow WW \rightarrow jj\mu\nu$
 $e^{+}e^{-} \rightarrow ZH \rightarrow \nu\nu bb$

Configuration	W		Z		h	
	Δm	σ	Δm	σ	Δm	σ
Calo no material	-0.108	3.02	-0.009	3.14	-0.01	3.72
Calo+Ch no material	0.07	2.86	0.18	3.05	0.10	3.48
Calo 1X0	-0.08	3.14	-0.13	3.73	-0.18	3.95
Calo+Ch 1X0	0.08	3.01	0.21	3.26	-0.13	3.72

Particle flow

- A simple PF algorithm implemented for crystal + fibres calorimeter.
 - Track-to-calo match based on difference between expected response and track momentum.
 - Further refinement and enhancement possible, but implementation good enough to see potential.
 - More complex, machine-learning options for PF being explored as part of AIDAinnova for the fibre calorimeter.

