Monte Carlo simulations for the FCC-ee

Saptaparna Bhattacharya¹, Sergui Chekanov²

¹Northwestern University, Humboldt Fellow, ²Argonne National Laboratory FCC-ee Workshop, Brookhaven National Laboratory April 24-26, 2023

What have we learned from the LHC

Generator usage split by events in CMS

Running jobs: 425936 Active CPU cores: 1098036 Transfer rate: 49.51 GiB/sec

Computing infrastructure.

Data SIO, NOAA, U.S. Navy, NGA, GEBCO **Image IBCAO** Image Landsat / Copernicus

Google Earth

The potential of the FCC-ee

Physics Potential

Scale of new physics

Physics Potential

- Measure *gHZZ* with 0.05% statistical precision
- Measure *gHcc* with 1.3% statistical precision
- Unprecedented precision on top Yukawa
- Reduction of statistical uncertainties by ~500 (5 \times 10^{12} Z's)
- WW threshold: 3 orders of magnitude more than LEP
- Flavor physics: allows for stringent tests of lepton flavor universality

- Opportunity for broad model independent search program
- Exotic decays of the Higgs
 - Sensitivity to Higgs branching fraction increases by several orders of magnitude with respect to the HL-LHC
- Long-lived particles
- Axion-like particles

$$(e^+e^- \rightarrow a\gamma \rightarrow (\gamma\gamma)\gamma)$$

Search for dark matter → heavy neutral neutrinos
 (e⁺e⁻ → Z → νN, N is the long-lived particle)

$$\mathscr{L}_{\mathsf{SMEFT}} = \mathscr{L}_{\mathsf{SM}} + \sum_{i} \frac{C_{i}}{\Lambda^{2}} \mathscr{O}_{i}$$

The improvements on most Wilson Coefficients by factor of 4-10 with respect to HL-LHC

Thread of commonality

- What all of these scenarios have in common is that we need state-of-the-art simulations for FCC-ee
- Launch a concerted effort to make simulations available for physics feasibility studies
- Identify bottlenecks in workflows
- Leverage our knowledge and experience from the LHC
- Organizing the effort to produce large scale simulation samples is as important as discussions on detector designs → more than revisiting LEP era calculations

•

General considerations

David d'Enterria's Talk

https://arxiv.org/pdf/1911.12040.pdf

- Extremely clean events, for precise cross sections need:
 - Precise computation of $\alpha_{_{\!S}}$
 - NnLO and NnLL resummation
 - High-precision PDFs

Special Requirements

Marek Schönherr's Talk

- For electroweak precision observables
 - m_Z , Γ_Z , $\sin^2 \theta_W^{\rm eff}$, $\alpha(M_Z)$ and $\alpha_s(M_Z)$
- To take advantage of full potential of the FCC-ee, need:
 - At least NNLO EW needed for almost all computations
 - For Bhabha scattering: N3LO for luminosity measurements

LEP era computation

- Event generators from the LEP era cannot be scaled up to meet the needs of the FCC-ee
 - FORTRAN based → scaling up and GPU porting hard
 - Event Data Model (EDM), which is a compressed data format for LHC studies proven to be performant and efficient → non compliant

Partnership with generator theory community

- Implement state-of-the-art event generator workflows with the most precise predictions available
- Design workflow for centralized Monte Carlo production
- Partnership with generator theory community is crucial
- Downstream steps include detector simulation
 - Use GEANT or Delphes for most physics studies?
 - Three different detector technologies proposed: full simulation to be run centrally or by individual groups and compare performance?

Martin Aleksa's talk

Bottlenecks?

- Total data to be collected: 150 ${
 m ab}^{-1}$ in the first two years at $\sqrt{s}=240$ GeV
 - Assuming major background contributions from diboson processes (WW/ZZ) where $\sigma_{WW/ZZ}$ = 18 pb, which means 2.7 billion events
 - Need to generate 13 billion events to keep statistical uncertainties low
 - Even with the choice of storing events in compressed format (ROOT/ProMC) would require 40 TB
 - Required data storage with simulation and reconstruction steps could exceed several petabytes
 - Computation may be parallelizeable, storage will be a bottleneck

Organizing effort

- This is the right time to start planning for generation of large scale Monte Carlo samples
- Imperative to pass first step in the long sequence of steps toward FCC-ee

F. Gianotti

Additional Material

Generator usage split by samples (each MC request)

Event complexity

 e^+e^- collisions