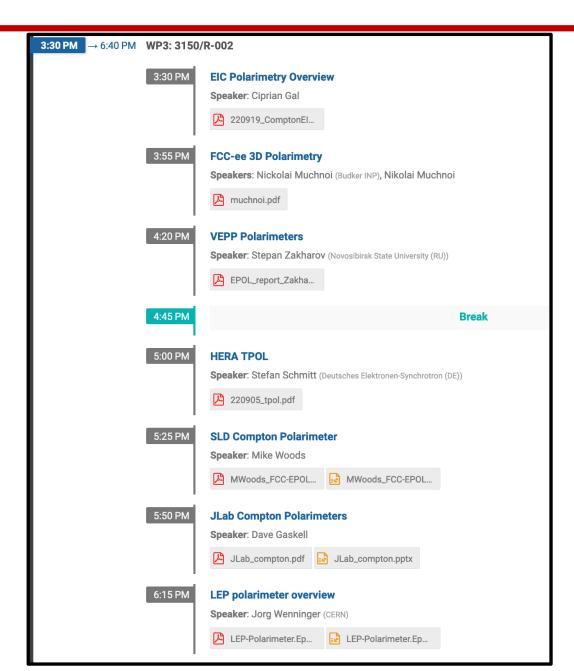

Electron Polarimetry: FCC-ee and EIC Synergies

Dave Gaskell
Jefferson Lab

Future Circular Collider (FCC) Workshop 2023

April 24-26, 2023

EIC and FCC-ee Polarimetry: areas of overlapping interest


- The Electron Ion Collider (EIC) at BNL and FCC-ee will operate in different energy regimes, but face some common issues with respect to electron polarization measurements
- Compton polarimeters are very sensitive to beam properties
 - Beam size and stability
 - Beam-related backgrounds (synchrotron, Bremsstrahlung, halo-induced)
- Laser technologies and polarization measurement techniques
- Detectors
- Simulations

EPOL Workshop

FCC EPOL workshop, September 2022

- Combined with joint EIC-FCC working meeting on e+/e- polarization
- Sessions on Compton polarimetry included experts from facilities (prior, existing, and planned) worldwide
- Significant EIC participation with respect to polarized sources, polarized beam tracking, etc.

EIC and **FCC**-ee comparisons

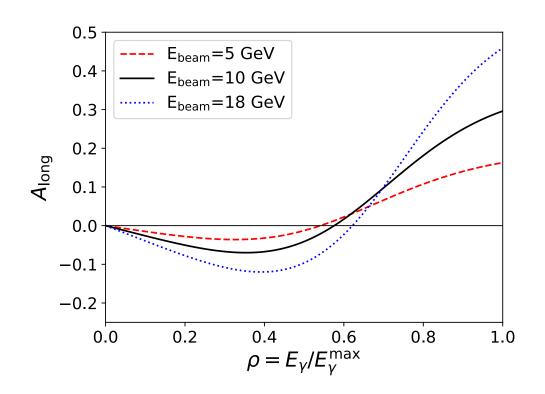
- EIC Electron Storage Ring
 - −P=75-85% → electrons fully polarized at injection
 - -E = 5, 10, 18 GeV
 - -Beam current = 2.5 A (5, 10 GeV), 0.26 A (18 GeV)
 - -Bunch spacing = 10 ns (5,10 GeV), 40 ns (18 GeV)
- Rapid Cycling Synchrotron
 - Accelerates bunches from 400 MeV to full energy in storage ring (5, 10, 18 GeV)
 - -Bunch frequency → 2 Hz
 - -Bunch charge → up to 28 nA
 - -Ramping time = 100 ms
- Polarimeter functions
 - High precision absolute polarization measurements for ESR (experiment)
 - Modest precision absolute polarization measurements in RCS (beam tune-up)

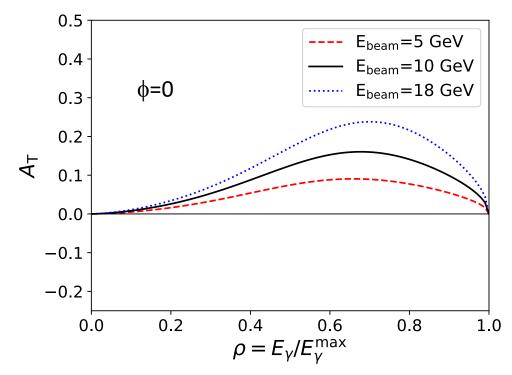
FCC-ee

- −P=10% to ? → polarization from Sokolov-Ternov effect
- -45.6, 80, 120, 182.5 GeV
- -Beam current = 1390, 147, 29, 5.4 mA
- Bunch spacing = 19.6, 163, 994, 3396ns (colliding bunches), 3 kHz (pilot bunches)

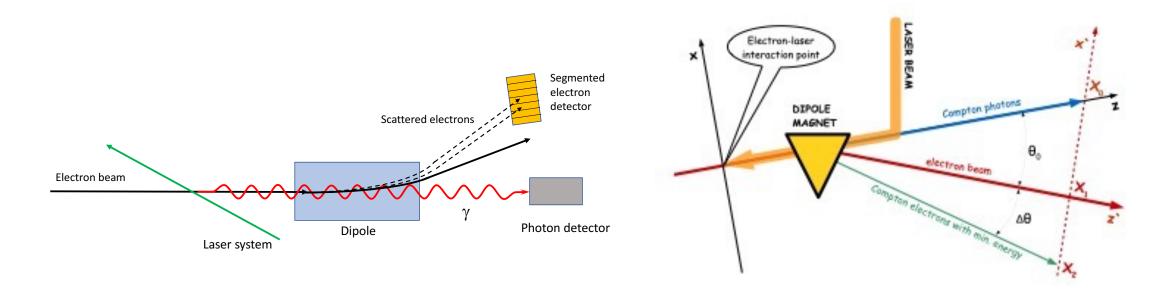
Polarimeter functions

- Relative polarization of pilot bunches for Resonant Depolarization (RDP) measurement or Free Spin Precession (FSP)
- Monitor longitudinal polarization of colliding bunches → stringent upper limits




Polarization Measurement via Compton Polarimetry

Compton longitudinal and transverse analyzing powers

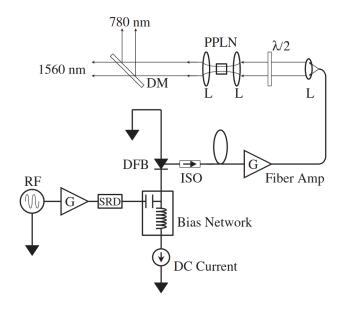

$$A_{\text{long}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} (1 - \rho(1+a)) \left[1 - \frac{1}{(1-\rho(1-a))^2} \right] \qquad A_{\text{T}} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left| \rho(1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right|$$

$$A_{\rm T} = \frac{2\pi r_o^2 a}{(d\sigma/d\rho)} \cos \phi \left[\rho (1-a) \frac{\sqrt{4a\rho(1-\rho)}}{(1-\rho(1-a))} \right]$$

Generic Compton Polarimeter

Key systems:

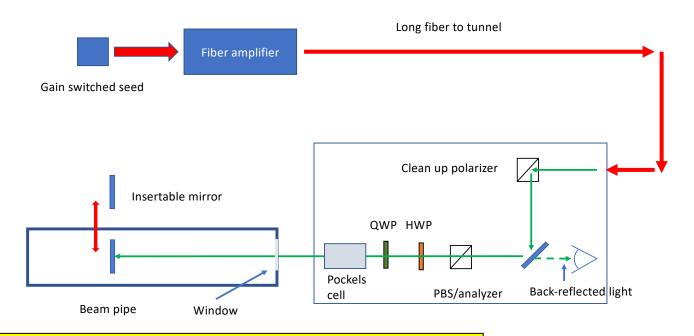
- → Laser
- → Photon and electron detector
- → Dipole


Beam interfaces:

- → Vacuum chambers, windows
- → Beam diagnostics → size, trajectory
- → Background mitigation → collimators, synchrotron absorbers

EIC ESR Compton Polarimeter Laser System

Average of 1 backscattered photon/bunch crossing will allow Compton measurements on the ~1 minute time scale → can be achieved with pulsed laser system that provides about 5 W average power at 532 nm


JLab injector laser system

Polarization in vacuum set using "back-reflection" technique

→ Requires remotely insertable mirror (in vacuum)

Proposed laser system based on similar system used in JLab injector and LERF

- 1. Gain-switched diode seed laser variable frequency, few to 10 ps pulses @ 1064 nm
 - → Variable frequency allows optimal use at different bunch frequencies (100 MHz vs 25 MHz)
- Fiber amplifier → average power 10-20 W
- 3. Optional: Frequency doubling system (LBO or PPLN)
- 4. Insertable in-vacuum mirror for laser polarization setup

Prototype system under development (C. Gal, JLab)

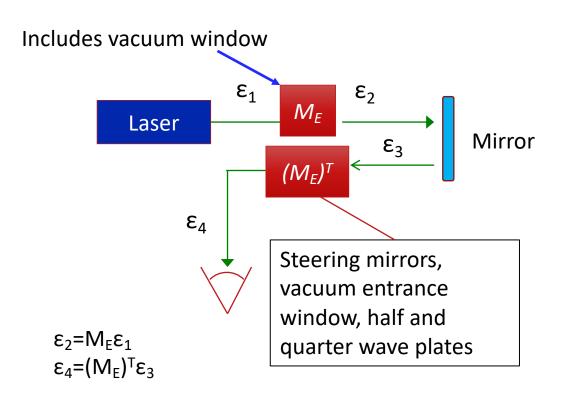
Jetterson Lab

Laser systems for FCC-ee

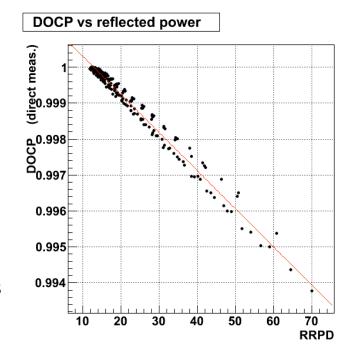
technology	Q-switch	modelock Yb	modelock Yb
bunch type	pilots	pilots	colliding
$\overline{f_{ m rep.}}$	3 kHz	3 kHz	30 kHz
U	$1 \mathrm{mJ}$	$1 \mathrm{mJ}$	$10 \times 50 \ \mu J$
P	$3~\mathrm{W}$	$3 \mathrm{W}$	15 W
σ_t	3 ns	30 ps	30 ps
$\sigma_{x/y,l}$	$1.5 \mathrm{\ mm}$	$1.5 \mathrm{\ mm}$	$1.5 \mathrm{\ mm}$
heta	2 mrad	$3 \deg$	$3 \deg$
$n_{\rm int.}/{\rm crossing}$	45	50	60
$n_{ m int.}/s$	$1.4 \times 10^5 \text{s}^{-1}$	$1.5 \times 10^5 \text{s}^{-1}$	$1.8 \times 10^7 \text{s}^{-1}$

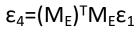
Collide with ~100 bunches – change phase to sample all bunches in ring

Q-switched laser meets requirements for pilot bunches, but mode-locked Yb offers ability to measure both pilot and (a subset of) the colliding bunches


→ Mode-locked laser solution is similar to the EIC gain-switched solution → gain-switched system may offer more flexibility (?)

Laser Polarization – experience at JLab/DESY → EIC and FCC?


Propagation of light through the vacuum window to the IP can be described by matrix, M_E

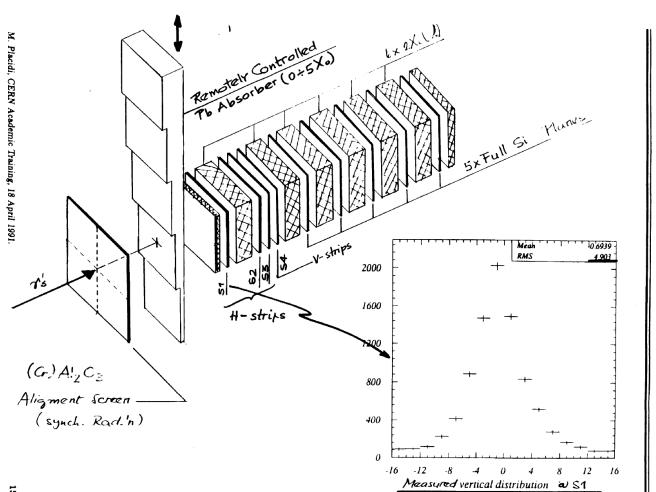

- \rightarrow Light propagating in opposite direction described by transpose matrix, $(M_E)^T$
- \rightarrow If input polarization (ϵ_1) linear, polarization at cavity (ϵ_2) circular only if polarization of reflected light (ϵ_4) linear and orthogonal to input*

Laser polarization at a mirror (inside vacuum) can be set/determined by monitoring the back-reflected light in a single photodiode

- → Used this technique at JLab to constrain laser polarization to ~0.1%
- → FCC will require 0.01% level precision to meet requirements for minimizing P_I

Detection: S/W Calorimeter

Detectors


EIC ESR Compton will operate in single-photon mode with short times between bunches

- → EIC RCS will operate in multi-photon mode with many backscattered photons between bunch crossing
- → Need to measure position dependent asymmetry to extract transverse polarization
- → FCC-ee polarimeter will operate in fashion similar to RCS

Both EIC-RCS and FCC-ee will use some sort of pixel or strip detector, operating in integrating mode

- → Timing requirements also similar
- → Perhaps common detector technology possible

LEP Transverse Compton Detector

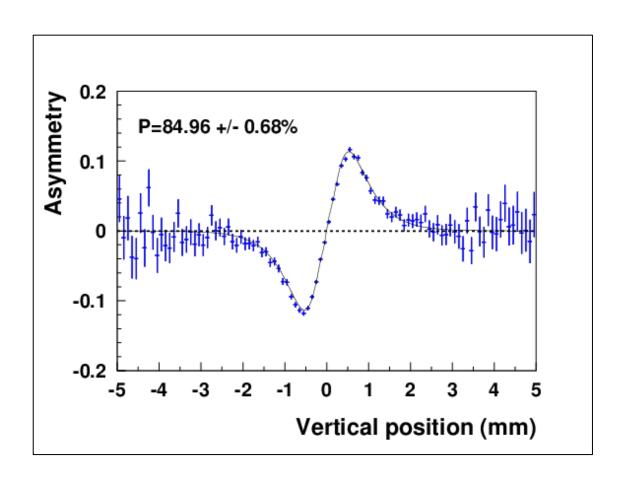
Detector Requirements – EIC Electron Detector

Detector size: capture (longitudinal) asymmetry zero crossing and kinematic endpoint \rightarrow this will be largest at highest energy (18 GeV) \rightarrow 4.5 cm

Detector segmentation: at least 30 bins from endpoint to zero crossing to allow "self-calibration" → 400 um

JLab Hall C diamond detector

Additional requirements


- → Fast resolve 100 MHz beam bunch structure
- → Radiation hard → large integrated dose in normal running

Default solution = diamond

- → In use at JLab, but with more modest timing requirements
- → CALYPSO electronics (modified version under development for Hall A) already nearly meets the EIC requirements

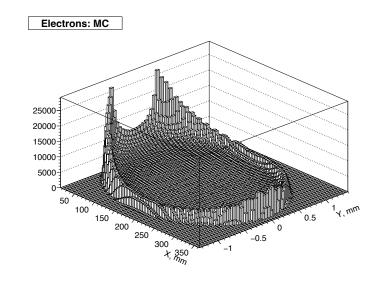
Detector Requirements – EIC Photon Detectors

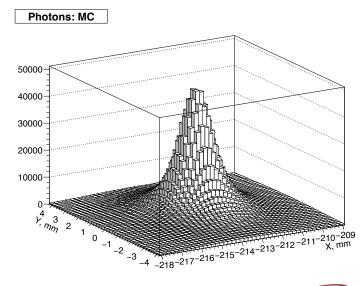
- ESR photon detector must measure longitudinal and transverse polarization
- Same timing requirements as electron detector 10 ns spacing
- P_L from energy spectrum → need high resolution crystal calorimeter
 - BaF2 or PbWO4 (filter slow components)
- P_T from spatial asymmetry (left-right/up-down)
 - 10 ns bunch spacing → diamond strips (x-y)
 - 100-200 μm strips to allow "self calibration" –fit asymmetry and offset
- RCS will primarily measure transverse polarization
 - Larger bunch spacing so can be slower than ESR detectors
 - Like ESR, need 100-200 µm segmentation, operated in integrating/multi-photon mode → still investigating optimal detector technology

Fit to simulated "ideal spectrum" → offset allowed to float

Detector Requirements – FCC-ee

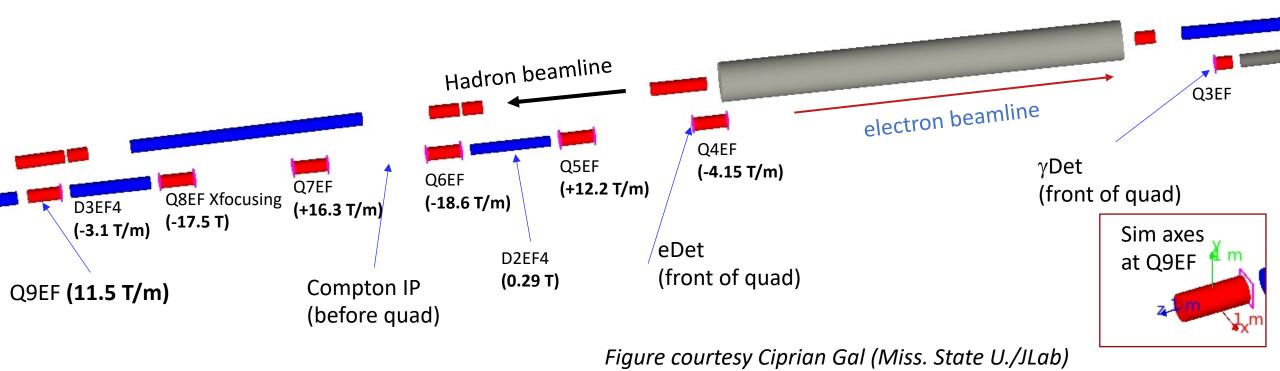
Table 3. Detectors: geometry, number of pixels, size of pixels.


Detector	Size $(X \times Y)$	N pix $(X \times Y)$	Pixel size $(X \times Y)$
Photons	$10 \times 10 \text{ mm}$	100×100	$100 \times 100 \ \mu \text{m}$
Electrons	$400 \times 4 \text{ mm}$	1600×80	$250 \times 50 \ \mu \text{m}$


Simulations of photon/electron distributions exist: For example, *N. Yu. Muchnoi, JINST* 17 (2022) 10, P10014

Expect 40-60 backscattered photons/scattered electrons per laser-beam bunch crossing → must operate in integrating/multi-photon mode

Required segmentation requires further study, but easily achievable pitch sizes appear adequate


- → Less stringent timing requirements → maximum laser repetition rate 4 kHz
- → Emphasis on transverse polarization → modest energy resolution calorimeter adequate?

Polarimeter Simulations

EIC has GEANT4 simulation of ESR Compton, including Compton event generation, beamline geometry, and detectors

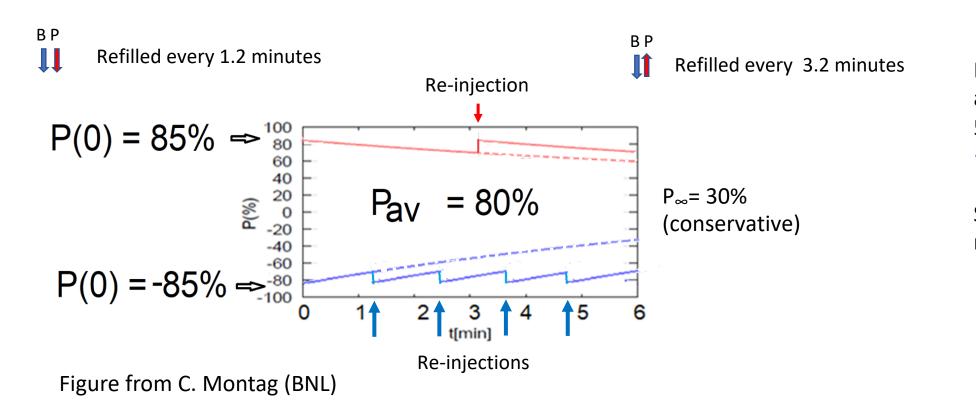
→ Framework could be easily adapted for other polarimeters → in use for some KEKb related simulations (U. Manitoba)

Has been used for studies of beam-related backgrounds, beam size sensitivity, detector requirements, etc.

Summary

- Communication between EIC electron polarimetry group and FCC EPOL group already underway
 - Participation of EPOL members in EIC Polarimetry Working Group meetings and vice versa
- EPOL workshop in 2022 emphasized many of our common issues and goals
 - Example: EIC laser system already benefitting from valuable input from FCC EPOL group
- Several areas of common interest will work to maintain communication and collaboration

Extra


ESR Beam Properties and Polarimetry Challenges

EIC will provide unique challenges for electron polarimetry

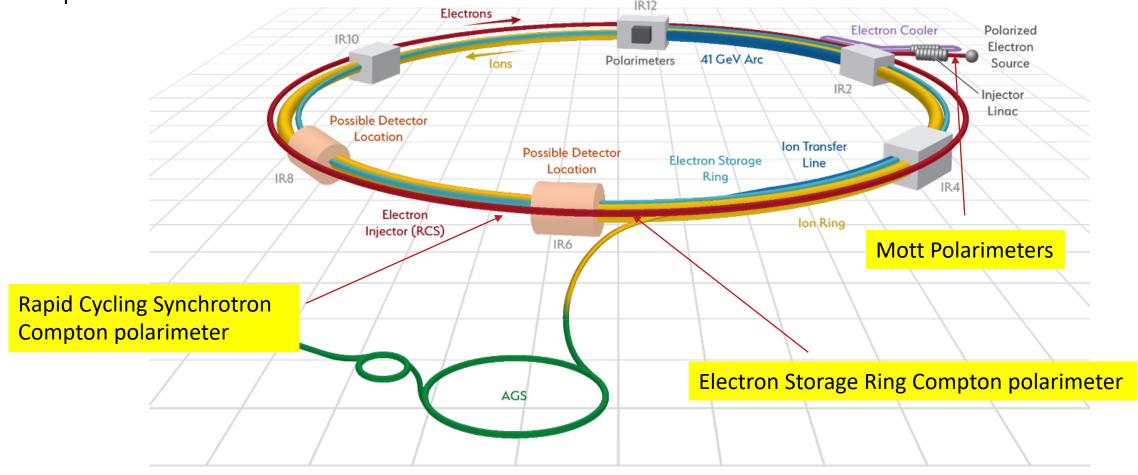
- → 10 ns between electron/hadron bunches at high luminosity configuration (~40 ns at higher CM configuration)
- \rightarrow Intense beams (0.26 to 2.5 A)
 - → Large synchrotron radiation

Requirements:

- → Bunch-by-bunch measurement of polarization
- \rightarrow Simultaneous measurement of both P_L and P_T
- → Measurement fast enough to achieve 1% statistics for each bunch
- \rightarrow Systematics dP/P = 1% or better

Bunches will be replaced about every 50 minutes at 5 and 10 GeV

→ 1-3 minutes at 18 GeV


Sets requirement for measurement time scale

EIC Electron Polarimeter Map

RCS ramps electrons to full energy → injects into storage ring Storage ring will have "top-off" injection

RCS and ESR polarimeters will function in 2 different modes

Electron Storage Ring (ESR) Compton Polarimeter

Compton polarimeter will be upstream of upstream of detector IP

At Compton interaction point, electrons have both longitudinal and transverse (horizontal) components

- → Longitudinal polarization measured via asymmetry as a function of backscattered photon/scattered electron energy
- → Transverse polarization from left-right asymmetry

Beam energy	P _L	P _T
5 GeV	96.5%	26.1%
10 GeV	86.4%	50.4%
18 GeV	58.1%	81.4%

Polarization Components at Compton

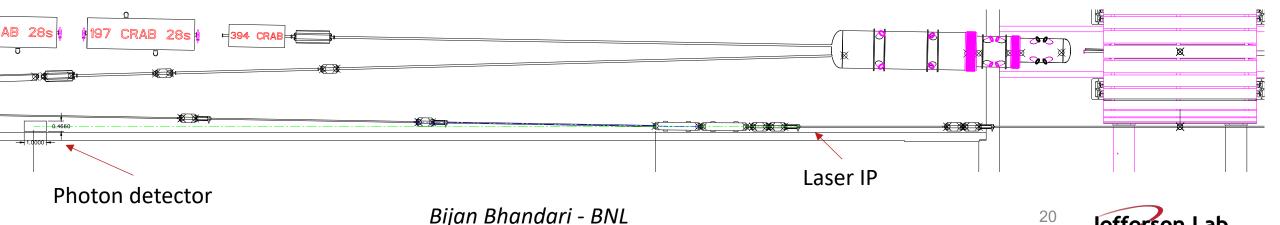
Beam polarization will be fully longitudinal at detector IP, but accurate measurement of absolute polarization will require *simultaneous* measurement of P_L and P_T at Compton polarimeter

EIC Compton will provide first **high precision** measurement of P_L and P_T at the same time

Rapid Cycling Synchrotron (RCS) Compton Polarimeter

RCS properties

- RCS accelerates electron bunches from 0.4 GeV to full beam energy (5-18 GeV)
- Bunch frequency → 2 Hz
- Bunch charge → up to 28 nA
- Ramping time = 100 ms



Polarimetry challenges

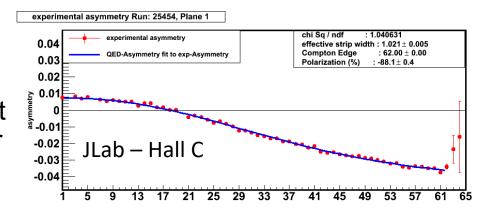
- Analyzing power often depends on beam energy
- Low average current
- Bunch lifetime is short

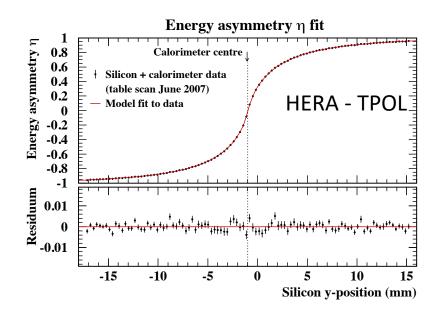
Compton polarimeter can also be used for measurement of polarization in RCS

- → Measurements will be averaged over several bunches can tag accelerating bunches to get information on bunches at fixed energy
- → Requires measurement in multiphoton mode (many backscattered photons/electron bunch)

Compton polarimetry – lessons from previous devices

Longitudinal polarimetry


- Electron detector needs sufficient segmentation to allow self-calibration "on-the-fly"
- Photon detector integrating technique provides most robust results – perhaps not practical at EIC? → lower the threshold as much as possible


Transverse polarimetry

- Remove η-y calibration issue use highly segmented detectors at all times
- Calorimeter resolution → integrate over all energy?
- Beam size/trajectory important build in sufficient beam diagnostics

Common to both

 Birefringence of vacuum windows can impact laser polarization → use back-reflected light (optical reversibility theorems)

