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Problem (Integer factorization): Complexity of a problem is the number

Given a composite integer, find a factor. of elementary operations f(n) needed to
solve it as the size of the input n grows.

Example: * n is the number of bits needed to

18848997157 = 13729 x 1372933 represent the integer in binary

Factoring on a “classical” computer:

How hard is this * Best current algorithm has ftctoring Which

pr Obl em grows faster than any polynomial.
. 0) e Very strong theoretical evidence that
com pUtatlonal Iy . fractoring Cannot be any polynomial
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On quantum hardware,
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operations!
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Factoring and quantum mechanics

~ ~

On quantum hardware,
| can factor any integer
in less than O(n?)
elementary quantum
operations!

_/

Extended Church-Turing thesis:
All “reasonable” models of computation yield
the same class of problems that can be
computed in polynomial time

Peter Shor
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Quantum Teleportation

Quantum degrees of freedom
can be entangled Entanglement is a

useful resource!

Quantum Teleportation (Bennett, Wiesner ‘92)

e Shared entangled pair + 2 classical bits — Teleportation of 1 qubit!
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Quantum Teleportation

e Alice has two qubits A;, A,
* Bob has a single qubit B

* Piis an orthogonal measurement
jointly on 2 Alice’s qubits with i=0,1,2,3

* Bob applies P;

e B A A

1
V2 Teleportation!




Quantum Teleportation Local Operations &
Classical Communication (LOCC):

* Local Measurements

e Alice has two qubits A;, A,

* Bob has a single qubit B

_ . . .
* P;is an orthogonal measurement Local unitary evolution

jointly on 2 Alice’s qubits with i=0,1,2,3 e Conditioning operations on measurement
* Bob applies P; outcomes
",+ + ++ +
6) — P 6)
‘ v & OPR
‘ \ A A
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W) L 00y + 11 .
V2 Teleportation!
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Entanglement, complexity, and phases of matter

From computational complexity to quantum state complexity:

= Complexity is a feature of the entanglement structure

Entanglement area law:

= The relevant “corner” of the Hilbert space

Classifying states according to their complexity:

= Topological phases of quantum matter

Collapsing the wavefunction:

= Connecting distinct phases without phase transitions by LOCC
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Entanglement

= Quantum 2-level system: |?7D> =a |O> +b |1>
= N-spin quantum 2-level system:
) € (C2)®N Configuration requires exponentially-long string

= |n general, states can be entangled:

W) # 1) @ ba) ... [YN)

Hilbert space is large because of entanglement.
Classify states according to their entanglement properties.
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= Decomposition over elementary building blocks

= Quantum process is a Unitary U : (C2)®N — (C2>®N

= Decomposition over some elementary gate set, with each gate

acting simultaneously on (at most) 2 qubits
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Quantifying Complexity: Quantum Circuits

= Boolean function of N variables: f : {O, 1}XN — {O, 1}

= Decomposition over elementary building blocks

= Quantum process is a Unitary [ : ((C2)®N — (C2)®N 0) —e H l A
0

= Decomposition over some elementary gate set, with each gate 0) i & l -

acting simultaneously on (at most) 2 qubits 0) ———Z A

Definition (State complexity): Shortest possible #layers to prepare [1) from a product state.
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Consider a (uniformly) randomly chosen state|1) of N qubits. How complex is it?

Almost all states have complexity that grows exponentially in N!

Complexity
N

A .
>

Q .
e Time

Random circuits have no shortcuts!

Brown & Susskind, PRD ‘18
Hafercamp et al., NP ‘22




Typical state complexity is exponential

Consider a (uniformly) randomly chosen state|1) of N qubits. How complex is it?

Almost all states have complexity that grows exponentially in N!

Complexity
A k endi
PRL 106, 170501 (2011) PHYSICAL REVIEW LETTERS 29 APRIL. 2011
S
S
)

Quantum Simulation of Time-Dependent Hamiltonians
and the Convenient Illusion of Hilbert Space

David Poulin,’ Angie Qarry,z’3 Rolando Somma,* and Frank Verstraete?

A .

>

«(n) : « . o . .
e Time [...] The overwhelming majority of states in Hilbert space
Random circuits have no shortcuts! are not physical as they can only be produced after an

exponentially long time”

Brown & Susskind, PRD ‘18
Hafercamp et al., NP ‘22
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For a meaningful classification, we need to
restrict to states with reasonable complexity

Definition (entanglement area law states):

S(A: B) < c|0A| forall regions A

where
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For a meaningful classification, we need to
restrict to states with reasonable complexity

Definition (entanglement area law states):

S(A: B) < c|0A| forall regions A

where

S(A:B)=—Tr(palogpa)
pa ="Trp|Yap) (Yas|

00 0K o6 o
®o 06 0 0/0 6 O

(e o ¢ o o o o7 CAIN.IN.]

(C)
o000 060000006060 Ooo
© 042 © 0 0 O

o L000 6 6 60 O
Ofm® © © 6 6 6 6 6 &6 OXYVO 60O

®© 000/ 060 06000000\ 600
© 0000 00000 06 0\0 600
oxHe.® 6 6606060606 06,68 6 60
O Oi\0 060 0606 000O0LHLOGOOO
® 0O NENENETEY 6 6 60 0
® 60660606 6 'S OO0 06060
6060606060666 66 6060606080
© 0606060606000 060060060O6O6OOO
©0 0060060600600 0606O6OO

oowooooooooooooo

60660666606 686060606060
(CINGC)

®© 0060060060006 006006006006COCO

Area law states:

= Describe low-energy physics when
interactions are local, i.e., short-ranged

= They admit a tensor-network
description. The necessary memory
only scales linearly in the system size

Hastings J. Stat. Mech. ‘07
Cirac et al., RMP 22
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h Ising Topological phases is a
P , classification according to
i “Disordered .
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Topological phases is a
classification according to
entanglement complexity

V1) N ~ [W2)p

Phase = Equivalence class

States in the same phase can
be connected by a shallow-
depth, local quantum circuit

Same phase implies
“Roughly the same”
circuit complexity



Phases of quantum matter via complexity

h Is1n Topological phases is a
' Disordered classification according t‘o Same phase implies
entanglement complexity “ .
1= Roughly the same
N o W1) o ~ [Us) circuit complexity
“Oscillatory” \‘\\é
\ Phase = Equivalence class
0 1 /4

States in the trivial

hase are feasible to
Phase diagram separates regions P

, o States in the same phase can prepare In a quantum
in parameter space where distinct be connected bv a shallow- .

Y oW simulator
states have a common property depth, local quantum circuit

Hastings, Wen, PRB ‘05
Chen, Gu, Wen PRB ‘11
Haah et al. FOCS18
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Classifying topological phases for 1D area law states

Definition (Topological phase): Two translation invariant quantum states are in the same
topological phase if there exists a log-depth local quantum circuit connecting them, i.e.,

Y1)y ~ V2)y = Un:|o)y =Un|t1)y VN

Aim: Classify all topological phases for MPS, i.e., find all equivalence classes.

Theorem (Classification in 1D) [Chen, Gu, Wen & Schuch, Perez-Garcia, Cirac ‘11]:

Phases are labeled by a positive integer

Example:

Trivial) , = ]00...0) == — |GHZ), =

-

2

Complexity phase transition

(0...0) + |1...



Classifying topological phases for 1D area law states

Is it possible to connect phases without a blowup in the complexity?




Classifying topological phases for 1D area law states

Is it possible to connect phases without a blowup in the complexity?

Theorem (Classification of topological phases in 1D including LOCC)
[Piroli, GS, Cirac, PRL 21]:

All 1D area law states can be connected with log-depth
circuits using LOCC
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...So what?

All 1D area law states can be connected with log-depth
circuits using LOCC

* Topological classification is not stable with respect to LOCC

* What is easy and what is hard depends on if measurements are considered!

Trivial) y = 00..0) == T |GHZ), = — (|0..0) +|1...1))

-

2

No complexity phase transition
with access to LOCC
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All 1D area law states can be connected with log-depth
circuits using LOCC

* Explicit protocol to create states on a digital quantum device
(Malz,” GS.* Wei,” Cirac, PRL “23):
* 1-round of measurements and log(N) circuit depth, or

* log log (N) rounds of measurements and log log(N) circuit depth



...So what?

All 1D area law states can be connected with log-depth
circuits using LOCC

* Explicit protocol to create states on a digital quantum device
(Malz,” GS.* Wei,” Cirac, PRL “23):
* 1-round of measurements and log(N) circuit depth, or
* log log (N) rounds of measurements and log log(N) circuit depth

* Exponential improvement over state of the art using LOCC

Lu et al., PRX Quantum ‘22



...So what?

All 1D area law states can be connected with log-depth
circuits using LOCC

e Structure of 1D area law states:
* Exact complexity of log (N) for all states in the trivial phase

e Symmetry-protected version (Gunn, GS, Kraft, Kraus ‘23)




Summary

= Quantum Information often analyzes physical processes from the lens of
computation and complexity theory




Summary

= Quantum Information often analyzes physical processes from the lens of
computation and complexity theory

= Complexity of a state is a statement about its entanglement structure




Summary

= Quantum Information often analyzes physical processes from the lens of
computation and complexity theory

= Complexity of a state is a statement about its entanglement structure

= Topological phases classify area law states with roughly equal complexity.




Summary

= Quantum Information often analyzes physical processes from the lens of
computation and complexity theory

= Complexity of a state is a statement about its entanglement structure
= Topological phases classify area law states with roughly equal complexity.

= Classification of topological phases changes if LOCC is included




Summary

= Quantum Information often analyzes physical processes from the lens of
computation and complexity theory

= Complexity of a state is a statement about its entanglement structure
= Topological phases classify area law states with roughly equal complexity.

= Classification of topological phases changes if LOCC is included

Thank you!
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