Quantum systems as manipulators of information: Entanglement, complexity, and phases of matter

Georgios Styliaris

Xmas Theoretical Physics Workshop @Athens 2023

Friday, Dec 22, 2023

The New York Times

Google Claims a Quantum **Breakthrough That Could Change Computing**

 \overrightarrow{f} Share full article \overrightarrow{f} \Box 602

Google's quantum computer. The company said in a paper published on Wednesday that the machine needed only a few minutes to perform a task that would take a supercomputer at least 10,000 years. Google

Annual Review of Condensed Matter Physics Spacetime from Entanglement

Brian Swingle^{1,2}

¹Department of Physics, Harvard University, Cambridge, Massachusetts 02142, USA 2 Department of Physics, University of Maryland, College Park, Maryland 20742, USA; email: bswingle@umd.edu

PUBLISHED FOR SISSA BY 2 SPRINGER

RECEIVED: April 22, 2015 ACCEPTED: May 26, 2015 PUBLISHED: June 23, 2015

Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence

Fernando Pastawski, a,1 Beni Yo

 a Institute for Quantum Information California Institute of Technology, 1200 E. California Blvd., Pasadena ^bPrinceton Center for Theoretical Sci 400 Jadwin Hall, Princeton NJ 08540 E-mail: fernando.pastawski@gma dharlow@princeton.edu, preskil. **Rei** Zeng Xie Chen Duan-Lu Zhou Xiao-Gang Wen

Quantum Science and Technology

Quantum Information Meets Quantum Matter From Quantum Entanglement to Topological Phases of Many-Body Systems **D** Springer

Goog that

super

Quantum Theory

Quantum formalism:

- Spin
- Entanglement

Quantum Theory

Quantum formalism:

- Spin
- Entanglement

Information Theory

- Information transmission
- Communication

Quantum Theory

Quantum formalism:

- Spin
- Entanglement

Information Theory

- Information transmission
- Communication

Computer Science

• Complexity theory

Problem *(Integer factorization)*: Given a composite integer, find a factor.

Problem *(Integer factorization)*: Given a composite integer, find a factor.

Example: 18848997157 = 13729 x 1372933

Problem *(Integer factorization)*: Given a composite integer, find a factor.

Example: 18848997157 = 13729 x 1372933

How hard is this problem **computationally**?

Problem *(Integer factorization)*: Given a composite integer, find a factor.

Example: 18848997157 = 13729 x 1372933

How hard is this problem **computationally**?

Complexity of a problem is the number of elementary operations f(n) needed to solve it as the size of the input n grows.

• n is the number of bits needed to represent the integer in binary

Problem *(Integer factorization)*: Given a composite integer, find a factor.

Example: 18848997157 = 13729 x 1372933

How hard is this problem **computationally**?

• n is the number of bits needed to represent the integer in binary

Factoring on a "classical" computer:

• Best current algorithm has $f_{\text{factoring}}$ which grows *faster than any polynomial*.

Problem *(Integer factorization)*: Given a composite integer, find a factor.

Example: 18848997157 = 13729 x 1372933

How hard is this problem **computationally**? **Complexity** of a problem is the number of elementary operations f(n) needed to solve it as the size of the input n grows.

• n is the number of bits needed to represent the integer in binary

Factoring on a "classical" computer:

- Best current algorithm has $f_{\text{factoring}}$ which grows *faster than any polynomial*.
- Very strong theoretical evidence that $f_{\text{factoring}}$ cannot be any polynomial

On quantum hardware, I can factor any integer in less than $O(n^3)$ elementary quantum operations!

On quantum hardware, I can factor any integer in less than $O(n^3)$ elementary quantum operations!

Extended Church-Turing thesis:

All "reasonable" models of computation yield the same class of problems that can be computed in polynomial time

Quantum degrees of freedom can be entangled and \blacksquare Entanglement is a

Charles Bennett

useful resource!

Quantum Teleportation (Bennett, Wiesner '92)

Quantum degrees of freedom

Charles Bennett

can be entangled **Entanglement** is a useful resource!

Quantum Teleportation (Bennett, Wiesner '92)

● Shared **entangled** pair + 2 **classical bits** → Teleportation of **1 qubit**!

- Alice has two qubits A_1 , A_2
- Bob has a single qubit B

- Alice has two qubits A_1 , A_2
- Bob has a single qubit B
- P_i is an orthogonal measurement jointly on 2 Alice's qubits with i=0,1,2,3

- Alice has two qubits A_1 , A_2
- Bob has a single qubit B
- \bullet P_i is an orthogonal measurement jointly on 2 Alice's qubits with i=0,1,2,3
- \bullet Bob applies P_i

- Alice has two qubits A_1 , A_2
- Bob has a single qubit B
- P_i is an orthogonal measurement jointly on 2 Alice's qubits with i=0,1,2,3
- Bob applies P_i

- Alice has two qubits A_1 , A_2
- Bob has a single qubit B
- P_i is an orthogonal measurement jointly on 2 Alice's qubits with i=0,1,2,3
- \bullet Bob applies P_i

- Alice has two qubits A_1 , A_2
- Bob has a single qubit B
- P_i is an orthogonal measurement jointly on 2 Alice's qubits with i=0,1,2,3
- \bullet Bob applies P_i

Local Operations & Classical Communication **(LOCC):**

- Local Measurements
- Local unitary evolution
- Conditioning operations on measurement outcomes

From computational complexity to quantum state complexity:

Complexity is a feature of the entanglement structure

From computational complexity to quantum state complexity:

Complexity is a feature of the entanglement structure

Entanglement area law:

The relevant "corner" of the Hilbert space

From computational complexity to quantum state complexity:

Complexity is a feature of the entanglement structure

Entanglement area law:

The relevant "corner" of the Hilbert space

Classifying states according to their complexity:

Topological phases of quantum matter

From computational complexity to quantum state complexity:

Complexity is a feature of the entanglement structure

Entanglement area law:

The relevant "corner" of the Hilbert space

Classifying states according to their complexity:

Topological phases of quantum matter

Collapsing the wavefunction:

Connecting distinct phases without phase transitions by LOCC

Quantum 2-level system: $|\psi\rangle = a |0\rangle + b |1\rangle$

- **Quantum 2-level** system: $|\psi\rangle = a |0\rangle + b |1\rangle$
- N-spin **quantum 2-level** system**:**

 $|\psi\rangle \in (\mathbb{C}^2)^{\otimes N}$ Configuration requires **exponentially-long** string

- **Quantum 2-level** system: $|\psi\rangle = a |0\rangle + b |1\rangle$
- N-spin **quantum 2-level** system**:**

 $|\psi\rangle \in (\mathbb{C}^2)^{\otimes N}$

Configuration requires **exponentially-long** string

In general, states can be entangled:

 $|\psi\rangle \neq |\psi_1\rangle \otimes |\psi_2\rangle ... |\psi_N\rangle$

- **Quantum 2-level** system: $|\psi\rangle = a |0\rangle + b |1\rangle$
- N-spin **quantum 2-level** system**:**

 $|\psi\rangle \in (\mathbb{C}^2)^{\otimes N}$

Configuration requires **exponentially-long** string

IF In general, states can be entangled:

 $|\psi\rangle \neq |\psi_1\rangle \otimes |\psi_2\rangle ... |\psi_N\rangle$

Hilbert space is large because of **entanglement.** Classify states according to their entanglement properties.

Quantifying Complexity: Quantum Circuits

- **Boolean** function of N variables: $f: \{0,1\}^{\times N} \to \{0,1\}$
- Decomposition over **elementary building blocks**

Quantifying Complexity: Quantum Circuits

- **Boolean** function of N variables: $f: \{0,1\}^{\times N} \to \{0,1\}$
- Decomposition over **elementary building blocks**

- **Quantum** process is a Unitary $U : (\mathbb{C}^2)^{\otimes N} \to (\mathbb{C}^2)^{\otimes N}$
- Decomposition over some **elementary gate set**, with each gate acting simultaneously on (at most) 2 qubits

Quantifying Complexity: Quantum Circuits

- **Boolean** function of N variables: $f: \{0,1\}^{\times N} \to \{0,1\}$
- Decomposition over **elementary building blocks**

- **Quantum** process is a Unitary $U : (\mathbb{C}^2)^{\otimes N} \to (\mathbb{C}^2)^{\otimes N}$
- Decomposition over some **elementary gate set**, with each gate acting simultaneously on (at most) 2 qubits

Definition *(State complexity):* Shortest possible #layers to prepare $|\psi\rangle$ from a product state.

 $B+C$

 $-Q = AB + BC(B+C)$

Consider a (uniformly) randomly chosen state $|\psi\rangle$ of N qubits. How complex is it?

Consider a (uniformly) randomly chosen state $|\psi\rangle$ of N qubits. How complex is it?

Almost all states have complexity that grows exponentially in N!

Consider a (uniformly) randomly chosen state $|\psi\rangle$ of N qubits. How complex is it?

Almost all states have complexity that grows exponentially in N!

Random circuits have no shortcuts!

Brown & Susskind, PRD '18 Hafercamp et al., NP '22

Consider a (uniformly) randomly chosen state $|\psi\rangle$ of N qubits. How complex is it?

Almost all states have complexity that grows exponentially in N!

Random circuits have no shortcuts!

Brown & Susskind, PRD '18 Hafercamp et al., NP '22

PHYSICAL REVIEW LETTERS PRL 106, 170501 (2011)

week ending 29 APRIL 2011

Quantum Simulation of Time-Dependent Hamiltonians and the Convenient Illusion of Hilbert Space

David Poulin,¹ Angie Qarry,^{2,3} Rolando Somma,⁴ and Frank Verstraete²

"[…] The overwhelming majority of states in Hilbert space are not physical as they can only be produced after an exponentially long time"

For a meaningful classification, we need to **restrict** to states with *reasonable complexity*

For a meaningful classification, we need to **restrict** to states with *reasonable complexity*

Definition *(entanglement area law states):*

 $S(A:B) \le c|\partial A|$ for all regions A

where

 $S(A:B) = -\text{Tr}(\rho_A \log \rho_A)$ $\rho_A = \text{Tr}_B |\psi_{AB}\rangle \langle \psi_{AB}|$

For a meaningful classification, we need to **restrict** to states with *reasonable complexity*

Definition *(entanglement area law states):*

 $S(A:B) \le c|\partial A|$ for all regions A **Area law states:**

where

$$
S(A:B) = -\text{Tr}(\rho_A \log \rho_A)
$$

$$
\rho_A = \text{Tr}_B |\psi_{AB}\rangle \langle \psi_{AB}|
$$

 Describe *low-energy physics* when interactions are local, i.e., short-ranged

For a meaningful classification, we need to **restrict** to states with *reasonable complexity*

Definition *(entanglement area law states):*

 $S(A:B) \le c|\partial A|$ for all regions A **Area law states:**

where

$$
S(A:B) = -\text{Tr}(\rho_A \log \rho_A)
$$

$$
\rho_A = \text{Tr}_B |\psi_{AB}\rangle \langle \psi_{AB}|
$$

- Describe *low-energy physics* when interactions are local, i.e., short-ranged
- They admit a tensor-network description. The necessary memory only scales *linearly* in the system size

Hastings J. Stat. Mech. '07 Cirac et al., RMP '22

Phase diagram separates regions in parameter space where **distinct states have a common property**

Topological phases is a classification according to **entanglement complexity**

 $|\Psi_1\rangle_N \sim |\Psi_2\rangle_N$

Phase = Equivalence class

Phase diagram separates regions in parameter space where **distinct states have a common property**

Topological phases is a classification according to **entanglement complexity**

 $|\Psi_1\rangle_N \sim |\Psi_2\rangle_N$

Phase = Equivalence class

Phase diagram separates regions in parameter space where **distinct states have a common property**

Hastings, Wen, PRB '05 Chen, Gu, Wen PRB '11 Haah et al. FOCS18

Topological phases is a classification according to **entanglement complexity** Same phase implies

 $\ket{\Psi_1}_N \sim \ket{\Psi_2}_N$

Phase = Equivalence class

"Roughly the same" circuit complexity

Phase diagram separates regions in parameter space where **distinct states have a common property**

States in the same phase can be connected by a **shallowdepth**, **local** quantum circuit

Hastings, Wen, PRB '05 Chen, Gu, Wen PRB '11 Haah et al. FOCS18

Topological phases is a classification according to **entanglement complexity** Same phase implies

 $\ket{\Psi_1}_N \sim \ket{\Psi_2}_N$

Phase = Equivalence class

Phase diagram separates regions in parameter space where **distinct states have a common property**

Hastings, Wen, PRB '05 Chen, Gu, Wen PRB '11 Haah et al. FOCS18

States in the same phase can be connected by a **shallowdepth**, **local** quantum circuit "Roughly the same" circuit complexity

States in the **trivial** phase are **feasible** to prepare in a quantum simulator

Definition (Topological phase): Two translation invariant quantum states are in the same topological phase if there exists a *log-depth local quantum circuit connecting them*, i.e.,

$$
\left|\psi_{1}\right\rangle_{N} \sim \left|\psi_{2}\right\rangle_{N} \quad \Longleftrightarrow \quad U_{N} : \left|\psi_{2}\right\rangle_{N} = U_{N} \left|\psi_{1}\right\rangle_{N} \quad \forall N
$$

Definition (Topological phase): Two translation invariant quantum states are in the same topological phase if there exists a *log-depth local quantum circuit connecting them*, i.e.,

$$
\left|\psi_{1}\right\rangle_{N} \sim \left|\psi_{2}\right\rangle_{N} \quad \iff \quad U_{N} : \left|\psi_{2}\right\rangle_{N} = U_{N} \left|\psi_{1}\right\rangle_{N} \quad \forall N
$$

Aim: Classify all topological phases for MPS, i.e., find all equivalence classes.

Definition (Topological phase): Two translation invariant quantum states are in the same topological phase if there exists a *log-depth local quantum circuit connecting them*, i.e.,

$$
\left|\psi_{1}\right\rangle_{N} \sim \left|\psi_{2}\right\rangle_{N} \quad \iff \quad U_{N} : \left|\psi_{2}\right\rangle_{N} = U_{N} \left|\psi_{1}\right\rangle_{N} \quad \forall N
$$

Aim: Classify all topological phases for MPS, i.e., find all equivalence classes.

Theorem *(Classification in 1D)* [*Chen, Gu, Wen & Schuch, Perez-Garcia, Cirac '11]*: **Phases are labeled by a positive integer**

Definition (Topological phase): Two translation invariant quantum states are in the same topological phase if there exists a *log-depth local quantum circuit connecting them*, i.e.,

$$
\left|\psi_{1}\right\rangle_{N} \sim \left|\psi_{2}\right\rangle_{N} \quad \iff \quad U_{N} : \left|\psi_{2}\right\rangle_{N} = U_{N} \left|\psi_{1}\right\rangle_{N} \quad \forall N
$$

Aim: Classify all topological phases for MPS, i.e., find all equivalence classes.

Theorem *(Classification in 1D)* [*Chen, Gu, Wen & Schuch, Perez-Garcia, Cirac '11]*: **Phases are labeled by a positive integer**

Example:

$$
|\text{Trivial}\rangle_N = |00...0\rangle \qquad \qquad \Longleftrightarrow \qquad |\text{GHZ}\rangle_N = \frac{1}{\sqrt{2}} (|0...0\rangle + |1...1\rangle)
$$

Complexity phase transition

Is it possible to **connect phases** without a blowup in the complexity?

Is it possible to **connect phases** without a blowup in the complexity?

Theorem *(Classification* of topological phases in 1D including LOCC) *[Piroli, GS, Cirac, PRL '21]*:

- Topological classification is *not stable* with respect to LOCC
	- What is easy and what is hard **depends on if measurements are considered!**

All 1D area law states can be connected with log-depth circuits using LOCC

- Topological classification is *not stable* with respect to LOCC
	- What is easy and what is hard **depends on if measurements are considered!**

$$
Trivial\rangle_N = |00...0\rangle \qquad \qquad \Longleftrightarrow \qquad |GHZ\rangle_N = \frac{1}{\sqrt{2}} (|0...0\rangle + |1...1\rangle)
$$

No *complexity phase transition with access to LOCC*

- Explicit protocol to create states on a digital quantum device (Malz,^{*} GS,^{*} Wei,^{*} Cirac, PRL '23):
	- 1-round of measurements and $log(N)$ circuit depth, or
	- $\log log(N)$ rounds of measurements and $log log(N)$ circuit depth

- Explicit protocol to create states on a digital quantum device (Malz,^{*} GS,^{*} Wei,^{*} Cirac, PRL '23):
	- 1-round of measurements and $log(N)$ circuit depth, or
	- \log log log (N) rounds of measurements and log log(N) circuit depth
	- Exponential improvement over state of the art using LOCC

- Structure of 1D area law states:
	- **Exact complexity** of log (N) for all states in the trivial phase
	- **Symmetry-protected** version (Gunn, CS, Kraft, Kraus '23)

 Quantum Information often analyzes physical processes from the *lens of computation and complexity theory*

- Quantum Information often analyzes physical processes from the *lens of computation and complexity theory*
- Complexity of a state is a *statement about its entanglement structure*

- Quantum Information often analyzes physical processes from the *lens of computation and complexity theory*
- Complexity of a state is a *statement about its entanglement structure*
- *Topological phases classify area law states with roughly equal complexity*.

- Quantum Information often analyzes physical processes from the *lens of computation and complexity theory*
- Complexity of a state is a *statement about its entanglement structure*
- *Topological phases classify area law states with roughly equal complexity*.
- *Classification of topological phases changes if LOCC is included*

- Quantum Information often analyzes physical processes from the *lens of computation and complexity theory*
- Complexity of a state is a *statement about its entanglement structure*
- *Topological phases classify area law states with roughly equal complexity*.
- *Classification of topological phases changes if LOCC is included*

