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● Spin

● Entanglement

● Information transmission
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Factoring and quantum mechanics

Problem (Integer factorization):
Given a composite integer, find a factor.

Example:

18848997157 = 13729 x 1372933

How hard is this 
problem 
computationally?

Complexity of a problem is the number 
of elementary operations f(n) needed to 
solve it as the size of the input n grows.

● n is the number of bits needed to 
represent the integer in binary

Factoring on a “classical” computer:
● Best current algorithm has ffactoring which 

grows faster than any polynomial.

● Very strong theoretical evidence that 
ffactoring cannot be any polynomial
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Factoring and quantum mechanics

On quantum hardware, 
I can factor any integer 
in less than O(n3) 
elementary quantum 
operations!

Extended Church-Turing thesis:
All “reasonable” models of computation yield 
the same class of problems that can be 
computed in polynomial time

Peter Shor
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Quantum Teleportation

Quantum degrees of freedom 
can be entangled Entanglement is a 

useful resource!

Quantum Teleportation (Bennett, Wiesner ‘92)

● Shared entangled pair + 2 classical bits → Teleportation of 1 qubit!

+ →

Charles Bennett
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B

Local Operations &
Classical Communication (LOCC):

● Local Measurements
● Local unitary evolution
● Conditioning operations on measurement 

outcomes

A1 A2 B

● Alice has two qubits A1, A2

● Bob has a single qubit B
● Pi is an orthogonal measurement 

jointly on 2 Alice’s qubits with i=0,1,2,3
● Bob applies Pi

Teleportation!
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Entanglement, complexity, and phases of matter 

From computational complexity to quantum state complexity:

 Complexity is a feature of the entanglement structure

Entanglement area law:

 The relevant “corner” of the Hilbert space

Classifying states according to their complexity:

 Topological phases of quantum matter

Collapsing the wavefunction:

 Connecting distinct phases without phase transitions by LOCC
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Entanglement

 Quantum 2-level system:

 N-spin quantum 2-level system: 

Configuration requires exponentially-long string 

 In general, states can be entangled:

Hilbert space is large because of entanglement.
Classify states according to their entanglement properties.
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Quantifying Complexity: Quantum Circuits

 Boolean function of N variables: 

 Decomposition over elementary building blocks

 Quantum process is a Unitary 

 Decomposition over some elementary gate set, with each gate 

acting simultaneously on (at most) 2 qubits 

Definition (State complexity): Shortest possible #layers to prepare         from a product state.
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Typical state complexity is exponential

Consider a (uniformly) randomly chosen state      of N qubits. How complex is it?

Almost all states have complexity that grows exponentially in N!

Brown & Susskind, PRD ‘18
Hafercamp et al., NP ‘22

Random circuits have no shortcuts!

“[…] The overwhelming majority of states in Hilbert space 
are not physical as they can only be produced after an 
exponentially long time”
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Entanglement area law states

For a meaningful classification, we need to 
restrict to states with reasonable complexity

Definition (entanglement area law states):

where

for all regions A Area law states:
 Describe low-energy physics when 

interactions are local, i.e., short-ranged

 They admit a tensor-network 
description. The necessary memory 
only scales linearly in the system size
Hastings J. Stat. Mech. ‘07
Cirac et al., RMP ‘22
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Phases of quantum matter via complexity

Phase diagram separates regions 

in parameter space where distinct 

states have a common property

Topological phases is a 
classification according to 

entanglement complexity Same phase implies 
“Roughly the same” 
circuit complexity

States in the same phase can 
be connected by a shallow-
depth, local quantum circuit

States in the trivial 
phase are feasible to 
prepare in a quantum 

simulator

Phase = Equivalence class

Hastings, Wen, PRB ‘05
Chen, Gu, Wen PRB ‘11
Haah et al. FOCS18



CS

Classifying topological phases for 1D area law states

Definition (Topological phase): Two translation invariant quantum states are in the same 
topological phase if there exists a log-depth local quantum circuit connecting them, i.e.,



CS

Classifying topological phases for 1D area law states

Aim: Classify all topological phases for MPS, i.e., find all equivalence classes.

Definition (Topological phase): Two translation invariant quantum states are in the same 
topological phase if there exists a log-depth local quantum circuit connecting them, i.e.,



CS

Classifying topological phases for 1D area law states

Aim: Classify all topological phases for MPS, i.e., find all equivalence classes.

Definition (Topological phase): Two translation invariant quantum states are in the same 
topological phase if there exists a log-depth local quantum circuit connecting them, i.e.,

Theorem (Classification in 1D) [Chen, Gu, Wen & Schuch, Perez-Garcia, Cirac ‘11]:

Phases are labeled by a positive integer



CS

Classifying topological phases for 1D area law states

Aim: Classify all topological phases for MPS, i.e., find all equivalence classes.

Definition (Topological phase): Two translation invariant quantum states are in the same 
topological phase if there exists a log-depth local quantum circuit connecting them, i.e.,

Theorem (Classification in 1D) [Chen, Gu, Wen & Schuch, Perez-Garcia, Cirac ‘11]:

Phases are labeled by a positive integer

Complexity phase transition

Example:
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Is it possible to connect phases without a blowup in the complexity?

Theorem (Classification of topological phases in 1D including LOCC)
[Piroli, GS, Cirac, PRL ‘21]:

All 1D area law states can be connected with log-depth 
circuits using LOCC

Classifying topological phases for 1D area law states



CS

…So what?

● Topological classification is not stable with respect to LOCC

● What is easy and what is hard depends on if measurements are considered!

All 1D area law states can be connected with log-depth 
circuits using LOCC



CS

…So what?

● Topological classification is not stable with respect to LOCC

● What is easy and what is hard depends on if measurements are considered!

No complexity phase transition
with access to LOCC

All 1D area law states can be connected with log-depth 
circuits using LOCC
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…So what?

● Explicit protocol to create states on a digital quantum device

(Malz,* GS,* Wei,* Cirac, PRL ‘23):
● 1-round of measurements and log(N) circuit depth, or
●  log log (N) rounds of measurements and log log(N) circuit depth
● Exponential improvement over state of the art using LOCC

All 1D area law states can be connected with log-depth 
circuits using LOCC

Lu et al., PRX Quantum ‘22
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…So what?

● Structure of 1D area law states:
● Exact complexity of log (N) for all states in the trivial phase
● Symmetry-protected version (Gunn, GS, Kraft, Kraus ‘23)

All 1D area law states can be connected with log-depth 
circuits using LOCC
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Summary

 Quantum Information often analyzes physical processes from the lens of 
computation and complexity theory

 Complexity of a state is a statement about its entanglement structure

 Topological phases classify area law states with roughly equal complexity.

 Classification of topological phases changes if LOCC is included

Thank you!
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