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This talk is about:
alternative strategies in the (hnumerical) conformal bootstrap

1. Physics (QFT) part:

alternative non-perturbative solution methods in CFTs [CFT problem]

The standard linear functional method vs other options

2. Computational part:

non-convex, large-scale optimization problems

Is Machine Learning (ML) / Artificial Intelligence (Al) a useful tool?
[numerical, Computer Science problem]



Example: Bootstrability [Cavaglia et al. "22]

VAN

bootstrap integrabllity
N 1d CFT on 1/2-BPS Wilson line in planar N=4 SYM theory

Sample of results for 3 squared (unprotected) OPE-coefficients

SDPB (~1000 digit precision)

C? C3 C?

0.294014873 + 4.88-10~8 | 0.039788 + 4.10-10~* | 0.146757 + 5.82-10—4
0.294014228 + 6.77-10~7 | 0.041832 + 1.86-10~3 | 0.144100 + 2.39-103

= (47)* ~ 157.91

improved truncation (16 digit precision)



e [or the first time a non-rigorous method, not relying on positivity,
competes so directly with the so-far standard rigorous tools in
numerical conformal bootstrap!

That opens up many possibilities...

e Al algos could play an interesting new role in theoretical problems

| will comment on a comparison between ML and non-ML algorithms

INn a specific example



Some motivation

¢ \Why Conformal Field Theories (CFTs)?

— UV/IR behaviour of QFTs
— Phase transitions
— Quantum Gravity via the AdS/CFT correspondence

& via the worldsheet description of strings...



e \Why bootstrap?

The non-perturbative structure of QFT is rich, but poses a

hard conceptual and computational problem

— Real-world physical systems with strong interactions

— QFT-QFT (strong-weak) dualities
— QFT-gravity dualities (holography)

— New exotic non-Lagrangian QFTs from String Theory...
(kills’ Lattice)

We need a (new) powerful framework for all these cases...



¢ [he conformal bootstrap programme
[Ferrara-Grillo-Gatto ’73, Polyakov 74| + [Rattazzi-Rychkov-Tonni-Vichi '08]
aims to solve CFTs non-perturbatively leveraging general principles of

symmetry (without using the path-integral)

— Caution: Symmetry alone cannot not be enough!

Combine: analytical, numerical, exact, perturbative...

at the center of this talk
¢ Recent progress in many fronts:

analytical numeric@ conformal bootstrap, hew exact methods Iin

SUSY gauge theories (e.q.iintegrability, Iocalizatior@...




How symmetry helps in CFTs

L ocal CFT data: operators O(x) with some quantum numbers under

global symmetries [scaling dimension A, spin s, charges Q.. ]

2-point correlation functions: (@(Al>(x1)@<AZ)(x2)> _ | 12 |
X1 — X

2A

3-point functions: (O, (x))O4 (%) 04 (x3)) = e



Operator Product Expansion (OPE)
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Example: 4-point functions (identical operators)

g(u,v)

<@(X1)@(X2)@(X3)@(X4)> — - -~
|10 |77 [ X34 ] W= 27
vi=({1-2(-2)
2 2 2 .2

_ X12X34 X234 . - -

U=——70 V=" (cross ratios)
A3A24 AM3A24 1 A

\cé@ Cé(/
Using the (12) and (34) OPEs we get an

expansion of the form: 2 / \ 3

g(u, v) — Z (C ) lgA l, (u V)‘mmy conformal bllocks

known functions
k
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The same function g(u, v) can be obtained with the (14)-(23) OPE

A 1 4
U 2
k
g(u,v) = (—) Z (C@@) gAk,fk(li:,,ﬁ)
v k
Yields a crossing equation of the form 2 3

Z (C§@>2 FAk(ua v) =0 to be solved for the CFT data (Ak, Cgﬁ)
k

Converted to an optimization problem:
— linear functional method (standard, convex optimization)

— we will discuss alternatives (non-convex opt) = ML/Al comes in
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Solving the crossing equations ¢ 6 = (CE@)Z

bhe:ar th c Y\D‘V\-anea“ Iw A

« functional dependence on z, 7

e infinite unknowns ¢, A

* infinite number of 4-point functions (& similar sum-rules)

12



Linear functional method [Rattazi-Rychkov-Tonni-Vichi, ’08]

e Act on crossing eq. with linear functionals

16, (F,) -0 [« (%, )= 4]

>O
ZO >

» Oracle assumptions, e.g- A, > A . for some operator

e Search for a :

«[TFo,, | 20 ¥ s70
b,S
o If @ exists, the assumption is eliminated
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w NO

This is a classification algorithm: assumption <.
* maybe
Ac
Pros: gl
 Ising
: 1.6
e Rigorous |
14[ 112
e Generic statements for CFTs ol
. . L A
e Sometimes cusps/islands 050 055 060 065 070 0.75 0.80
o Powerful Semi-Definite Programming El-Showk et al, "12

algorithm SDPB [Simmons-Duffin "15]
(convex optimization)

14



Cons:

e Jypically, the assumptions are blind. Difficult to:
- Scan high-dimensional parameter spaces
- Explore

- “Solve my theory”

e Positivity €, > 0 is not available in many contexts of interest

- higher-point bootstrap

64 & 4
- boundary CFT bootstrap \:t
- non-unitary theories 2; o, — ki

15




Cons:

e SDPB is powerful but expensive

(100s of digits precision required)

o Multiple-correlator bootstrap is a challenge

—

desirable to supplement the linear functional method with other methods

16



Truncation methods offer an alternative but are notoriously messy...

Let’s examine the issues. Our exact crossing eq. reads:

 known fonckioms oj D,

Z ([:n F“(z,i) + r(¥) =0 &

7 1
Uhk'\owh C“'bh ihcluol&s exw[.l

known Contiibwhions

Step 1: discretize the z, Z dependence



Yields a finite system of equations (still exact)

j_([:h\—:: y¥ = O

Step 2: Identify a subset & of "most significant” operators in Z

n

spin-partition: consider spins up to some max spin & for each spin s

assume N, operators

(don’t need to know their A’s)

18



Then (k) becomes (still exact)
2 S
Z_ Q:“ ]'-h + T + r =0
hGS K
. N
. C,F

h/s

(Common) Step 3: Set T = 0 for the ‘tail’ and solve!

|Gliozzi ’13] Pretend Z GHF + 7 = 0 is an exact over-constrained

n
neds

systems and try to solve it.

[ Technicalities: drastic truncation, typically O(10) operators]
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- [Li "17] Formulate a cost function & (e.g., Le-norm of f)

= o
and minimize it EEZ(E“F i

This is now a highly non-trivial non-convex optimization problem

In [2108.08859, 2108.09330] we started thinking albout this as a

large scale optimization problem (thinking that the larger & the better!)

20



This framework is still not good enough!

[1] It is not algorithmic

Q: How do you select the spin-partition?

2] Q: What is the effect of the infinite numlber of operators in the dropped

—
‘tail’ contribution 1'? (across parameter spaces?)

[3] Near-degeneracies can grow very quickly with scaling dimension

(and spectrum can e chaotic)

Q: How do you track this complexity”?

21



[4] It is not a straightforward optimization problem!

e Multi-nodal high-dimensional landscape of &

e Multiple basins of minima, complicated microstructure
(& many configurations with comparable cost value)

You may not be interested in the global minimum!

The fastest optimizer may not be the right one!

Efficiency in ‘local guided search’
Markov-chain algorithms

may be more suitable! Precisely
where Al/ML comes in for us...

[5] Related to the complexities of [3]+[4]:

adding more operators does not necessarily improve the accuracy

22



A viewpoint shift and proposed improvements

We now focus on families of CFTs: CFT[A]

e Consider adiabatic deformations of a CFT solved at some A*

[improves [1], consistent with the “solve my CFT” perspective]

—

e DO NOT drop the tail 1", approximate it!

[improves [2]]

Static approximation: At the known solution point A*

x o '
%:d:,, F;,% +T » < =0 (exao&)
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Allows us to determine the A*-tail from a finite number of CFT data:

JCF -

ne S

Assume that T(/l) ~ T(/l*) (at least in some regime of A)

Then,
Z&FH,.ZSC P
FE-F =~o

to be solved by minimizing a new cost function & (f — f*)

24



® [he contribution of nearly-degenerate operators can be

approximated by effective operators

l[addresses [3]]

(exact) = (e ad’) e
ZC:M o © ™ Z«:"e(—e F“

Acbandc S Mege
redluced # o{— OpS

ot

o Effective high-A operators can also be used to [address [5]]

— “dynamical soft tail”

(Diﬁerent optimization algorithms may treat the soft tail differently!! ]
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THE COMPUTATIONAL PROBLEM

Determine (local) minima of fZ(f — f*).

This is a non-convex optimization problem for the CFT data

(actual+effective) {A,, €, } € & (order 100-1000 unknowns)

26



BootSTOP Home Blog BootSTOP Conformal Blocks ()

BootSTOP (Bootstrap STochastic OPtimiser)

From BootSTOP repository README

---------------------------------------------------------------------------------------------------------------------------------

e Contents | PyGMO (Python Parallel Global Multiobjective Optimizer '
o Overview : |zzo-Biscani — European Space Agency :
o |nstallation

i SAC (Soft-Actor-Critic)

: developed for task control in robotics ;
o References --------------------------------------------------------------------------------------------------------------------------------

o Running the code

Overview

BootSTOP is a Python package for determining CFT data (OPE-coefficients squared and scaling dimensions) which
minimise a theory’s truncated crossing equation. To do this the code can apply either a custom PyTorch
implementation of the Soft-Actor-Critic algorithm or one of the algorithms within the PyGMO package
(information about PyGMO can be found on the PyGMO website).

At present the crossing equation for each of the following CFTs is coded within BootSTOP: 1D defect CFT (see [4]),



Soft Actor-Critic (SAC) algorithm
[Harnooja, Zhou, Abbeel, Levine ‘18]

e Stochastic optimization as a Markov Decision Process

¢ Handles continuous actions and state spaces

IR
learning algorithm / update memory buffer

[ Update policy) _reward R

/0 \

[ agent} [environment]

~_

action — C‘\oose C¥T d oxa

28



Technical features of the 1d CFT application that follows

' C‘llxlD‘6 agontS , v lSw\‘ms)
e ? sets of runs on QMUL HPC Apocrita [ ot
—p  LTPOPT C ‘PYCFHD

e S AC

1, (200 qua.ue,‘

aa;e'\{-s .~ |2 ‘WS)
e 124 CFT data

e Crossing egs with up to 260 or 700 derivatives (preloaded in BootSTOP)

e Machine precision (16 digits)

29



Application: 1d defect CFT on Wilson lines

Infinite straight (1/2-BPS) Wilson line in 4d N=4 SYM

r OO
W = TrPexp dt (iAt + CD”)
J —00
Local operators (O(¢) inserted on Wilson line captured by a 1d CFT

Interested in correlation functions

((O1(1))+Ox(ty))) := (TrW 0,(1) W20, (15) -+ O, (1, W, )

30



Focus on ({@7 (x;)®} () D' ()@ (x)))
. CI>1l is one of the 5 transverse scalars of N=4 SYM

e Planar limit, dependence on the 't Hooft coupling 4 = g%MN

Definiti \/z
efinition: g := ——
4r

¢ Dependence of the 4-point function on the single cross-ratio
X12X34

X13X24

31



e Operators are organized in superconformal multiplets

— protected B, , k= 1,2,... with A, =k (CDll = 95’1)

— long &'

e OPE:
ByX By =1+By+ ) Ly

“known, depends on A

........ '

e Crossing equation ...

unknown

32



Bootstrability [Cavaglia-Gromov-Julius-Preti, '21]

e Use integrability (QSC) to fix (some of the) planar A,

o Use bootstrap to determine C,% <Cn .= C%%QA)

A

8

Fix 10 long A, ’s and

determine C?, C2, C32 ;



Strategy 1: Linear functional method [Cavaglia et al, '21]

C,'2
0.3
0.2 '
C;g,2
0.1
C22
1 2 3 4
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Strategy 2: Traditional truncation

* Truncate to 10 operators with fixed scaling dimensions

- Minimize the root mean square cost function

With linear dependence on the unknowns ¢, := C,% this is a

inear-regression problem

The results are not impressive

35



0.4

0.3

0.2

0.1

Strategy 3: Improved Truncation

[VN-Papageorgakis-Richmond-Stapleton-Woolley, 23]

36

S H EHe

= (% using [IPOPT
* (% using IPOPT
* (3% using IPOPT
® C;?% using SAC
e (% using SAC
e (3% using SAC

—— (;* of Cavaglia et al.
—— (,? of Cavaglia et al.

—— (3? of Cavaglia et al.



. C12 results reproduced quite well

e.g., atg =02 / "igorous
SDPB 0.0663;= 1.9 x 102
IPOPT 0.066073 +42x105
SAC 0.067SSQEi 1.26 X 10-3;
K statistical

e [POPT & SAC treat the effective spectrum differently. Spread between

POPT-SAC shows correlation with size of SDPB allowed regions

e SAC mean is surprisingly accurate !!
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Bootstrability with integrated constraints [Cavaglia et al, '22]

Integrated correlators [Drukker et al, '22] [Cavaglia et al, '22] yield 2

extra sum rules for the defect CFT data that depend on g.

Use them to tighten the bootstrap bounds !

38



Linear functional method [Cavaglia et al, '22]

C,'2
0.4
C1 2
0.3
0.2
C32
0.1 feRES -
C22
N 3 4
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Improved Truncation [VN-Papageorgakis-Richmond-Stapleton-Woolley, 23]

C?

l

0.4

0.3

0.2

0.1




e Improved truncation performs as well (sometimes even better!) with

much less demand on numerical precision (16 vs 1000 digits)

Method | g C? C3 C?

2] 0.2 | 0.065679029 & 6.95-10~7 | 0.094524+7.25-1073 | 0.110141.27-102
IPOPT | 0.2 | 0.06567873 +1.55-10~7 | 0.09683 £1.41-10"3 | 0.1063 £2.42-1073
2] 0.4 | 0.16838882+£1.29-107% | 0.06925+2.80-10"° | 0.13196 &+ 7.16 - 10~
IPOPT | 0.4 | 0.16838814+6.13-10~7 | 0.07010 £1.06-1073 | 0.13026 & 2.58 - 10~3
2] 0.6 | 0.233041731 +4.49-10~7 | 0.05246 +1.47-10"3 | 0.14546 +2.99-1072
IPOPT | 0.6 | 0.233041064 +8.18-10=7 | 0.05347 £1.30-1073 | 0.14376 +2.37-1073

41




® [he soft taill works well everywhere from weak to strong coupling!

e New predictions for higher states are possible

(improvements expected with more QSC input)

e Multiple-correlator bootstrap is cheap and technically possible

42



Take home messages

e |mproved truncation methods are flexible, cheap & can be efficient

and accurate!

¢ \Ve can use them to attack physically interesting situations where

positivity IS absent

e Al-powered methods may play a useful role

— SAC mean is impressively accurate considering the numbers we
ran (200 SAC vs 4 x 108 [POPT agents)
— Better RL implementations? Collaborative Al, e.g. MARL?

43






Some (preliminary results) on the
6d N=(2,0) superconformal bootstrap

(without improvements in truncation method)

[Kantor-VN-Papageorgakis-Richmond]

e No Lagrangian —only AdS/CFT at ¢ = 0

e A- and D-series theories. Can bootstrap distinguish them??
A-series: ¢ = 25 to ¢ = ©

D-series: ¢ = 676 to ¢ = o0

45
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OPE-squared coefficient 4

Results (lowest protected multiplet “D series”)

DI0, 4] spin=0: D-series
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== = known bounds




Results (lowest protected multiplet “D series”)

DJ0, 4] spin=0: D-series

1.8

1.6
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== = known bounds



Results (lowest unprotected multiplet “D series”)

L[0,0] 1st, spin=0: D-series

8.6 )
—— A-series lowess

D-series lowess
® statistical mean
® best reward

== = known bounds
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Scaling dimension A
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Results (lowest unprotected multiplet “D series”)

L[0,0] 1st, spin=0: D-series

8.6

A-series lowess

D-series lowess
® statistical mean

DN series stops here P il

8.4

== = known bounds
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Results (lowest unprotected multiplet “D series”)

L[0,0] 1st, spin=0: D-series

1.3 » A-series lowess
/ D-series lowess
y} ® statistical mean

1.2 7 ® best reward

== = known bounds
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OPE-squared coefficient 4
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Results (lowest unprotected multiplet “D series”)

OPE-squared coefficient A*

L[0, 0] 1st, spin=0: D-series
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OPE-squared coefficient 4°

Results (lowest protected multiplet “A series”)

D[0, 4] spin=0: A-series
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— OPE inversion



Scaling dimension A

Results (lowest unprotected multiplet “A series”)

L[0, 0] spin=0: A-series
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Results (lowest unprotected multiplet “A series”)

OPE-squared coefficient 4*

L[0, 0] spin=0: A-series
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