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This talk is about: 
alternative strategies in the (numerical) conformal bootstrap 

1. Physics (QFT) part:  

alternative non-perturbative solution methods in CFTs            [CFT problem] 

The standard linear functional method vs other options                                                                                                                 

2. Computational part: 

non-convex, large-scale optimization problems 

Is Machine Learning (ML) / Artificial Intelligence (AI) a useful tool?  
                                                      [numerical, Computer Science problem]
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Example:   Bootstrability  [Cavaglia et al. ’22] 

         bootstrap       integrability 
in 1d CFT on 1/2-BPS Wilson line in planar N=4 SYM theory 

Sample of results for 3 squared (unprotected) OPE-coefficients

SDPB  (~1000 digit precision)

improved truncation  (16 digit precision)
λ = (4π)2 ≃ 157.91



• For the first time a non-rigorous method, not relying on positivity,  
competes so directly with the so-far standard rigorous tools in 
numerical conformal bootstrap!  

That opens up many possibilities… 

• AI algos could play an interesting new role in theoretical problems 

I will comment on a comparison between ML and non-ML algorithms 
in a specific example 
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Some motivation 

•  Why Conformal Field Theories (CFTs)? 

— UV/IR behaviour of QFTs 

— Phase transitions            

— Quantum Gravity via the AdS/CFT correspondence  

     & via the worldsheet description of strings…
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• Why bootstrap? 
 The non-perturbative structure of QFT is rich, but poses a  
 hard conceptual and computational problem 
  
 — Real-world physical systems with strong interactions 
 — QFT-QFT (strong-weak) dualities 
 — QFT-gravity dualities (holography) 
 — New exotic non-Lagrangian QFTs from String Theory… 

We need a (new) powerful framework for all these cases…  
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(`kills’ Lattice)



• The conformal bootstrap programme  
 [Ferrara-Grillo-Gatto ’73, Polyakov ’74] + [Rattazzi-Rychkov-Tonni-Vichi ’08]    

 aims to solve CFTs non-perturbatively leveraging general principles of   
 symmetry  (without using the path-integral) 

— Caution: Symmetry alone cannot not be enough!  
     Combine: analytical, numerical, exact, perturbative… 

• Recent progress in many fronts: 
 analytical/numerical conformal bootstrap, new exact methods in   
 SUSY gauge theories (e.g. integrability, localization) …
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at the center of this talk



How symmetry helps in CFTs 

Local CFT data: operators  with some quantum numbers under 

global symmetries [scaling dimension , spin , charges …] 

 

2-point correlation functions:      

 

3-point functions:     
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Δij,k := Δi + Δj − Δk



Operator Product Expansion (OPE)
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completely fixed by conformal symmetry

5-point



Example: 4-point functions (identical operators) 

 

   (cross ratios) 

Using the (12) and (34) OPEs we get an 

expansion of the form: 

⟨𝒪(x1)𝒪(x2)𝒪(x3)𝒪(x4)⟩ =
g(u, v)

|x12 |2Δ |x34 |2Δ

u =
x2

12x2
34
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13x2

24
, v =

x2
23x2
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g(u, v) = ∑
k
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𝒪𝒪)2 gΔk,ℓk
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conformal blocks 
known functions

 u := zz̄

v := (1 − z)(1 − z̄)



The same function  can be obtained with the (14)-(23) OPE 

 

Yields a crossing equation of the form 

    to be solved for the CFT data  

Converted to an optimization problem: 

— linear functional method  (standard, convex optimization) 

— we will discuss alternatives  (non-convex opt)   ➨ ML/AI comes in

g(u, v)

g(u, v) = ( u
v )

Δ

∑
k

(Ck
𝒪𝒪)2 gΔk,ℓk

(v, u)

∑
k

(Ck
𝒪𝒪)2 FΔk

(u, v) = 0 (Δk, Ck
𝒪𝒪)
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Solving the crossing equations 

 

• functional dependence on  

• infinite unknowns  

• infinite number of 4-point functions (& similar sum-rules)

z, z̄

ℭ, Δ
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ℭ𝒪 := (Ck
𝒪𝒪)2



Linear functional method       [Rattazi-Rychkov-Tonni-Vichi, ’08] 

• Act on crossing eq. with linear functionals  

 

• Oracle assumptions, e.g.   for some operator 

• Search for  :  

• If  exists, the assumption is eliminated

α

Δs ≥ Δmin

α

α
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This is a classification algorithm:        assumption  
                                                

Pros:  

• Rigorous 

• Generic statements for CFTs 

• Sometimes cusps/islands 

• Powerful Semi-Definite Programming 
 algorithm SDPB [Simmons-Duffin ’15] 
 (convex optimization) 
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Εl-Showk et al, ’12

NO

maybe



Cons:  

• Typically, the assumptions are blind. Difficult to: 
 - Scan high-dimensional parameter spaces 
 - Explore 
 - ``Solve my theory’’ 

• Positivity  is not available in many contexts of interest 

 - higher-point bootstrap 
 - boundary CFT bootstrap 
 - non-unitary theories

ℭk ≥ 0
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Cons:  

• SDPB is powerful but expensive 
 (100s of digits precision required) 

• Multiple-correlator bootstrap is a challenge 

⇒  

desirable to supplement the linear functional method with other methods
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Truncation methods offer an alternative but are notoriously messy… 

Let’s examine the issues. Our exact crossing eq. reads: 
 
 
 
 

Step 1: discretize the  dependence  
 

e.g., evaluation on a lattice or -derivatives on 

z, z̄

z, z̄ z = z̄ =
1
2
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Yields a finite system of equations (still exact) 

 
 

Step 2: Identify a subset  of ``most significant’’ operators in  

spin-partition: consider spins up to some max spin & for each spin s 

assume  operators 

(don’t need to know their ’s)

𝒮 ∑
n

Ns

Δ
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Then (✶) becomes (still exact) 

(Common) Step 3:  Set  for the `tail’ and solve! 

[Gliozzi ’13] Pretend  is an exact over-constrained 

systems and try to solve it.  
[Technicalities: drastic truncation, typically O(10) operators] 

⃗T = 0

∑
n∈𝒮

ℭn
⃗F n + ⃗r = 0
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• [Li ’17]  Formulate a cost function  (e.g., L2-norm of ) 

 
 
   
and minimize it      

 

This is now a highly non-trivial non-convex optimization problem 

 
In [2108.08859, 2108.09330] we started thinking about this as a  

large scale optimization problem    (thinking that the larger  the better!)          

ℒ ⃗E

𝒮
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This framework is still not good enough!                       

[1] It is not algorithmic 

     Q: How do you select the spin-partition? 

[2] Q: What is the effect of the infinite number of operators in the dropped       

          `tail’ contribution ?  (across parameter spaces?) 

[3] Near-degeneracies can grow very quickly with scaling dimension   
     (and spectrum can be chaotic)  

     Q: How do you track this complexity?

⃗T
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[4] It is not a straightforward optimization problem! 

• Multi-nodal high-dimensional landscape of  

• Multiple basins of minima, complicated microstructure  
(& many configurations with comparable cost value) 
   You may not be interested in the global minimum!  
   The fastest optimizer may not be the right one! 

[5] Related to the complexities of [3]+[4]: 

     adding more operators does not necessarily improve the accuracy

ℒ
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Efficiency in ‘local guided search’ 
Markov-chain algorithms  
may be more suitable! Precisely  
where AI/ML comes in for us…



A viewpoint shift and proposed improvements 

We now focus on families of CFTs:  CFT[ ] 

• Consider adiabatic deformations of a CFT solved at some  

 [improves [1], consistent with the ``solve my CFT’’ perspective] 

• DO NOT drop the tail , approximate it! 

 [improves [2]] 

Static approximation: At the known solution point 

λ

λ*

⃗T

λ*
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Allows us to determine the -tail from a finite number of CFT data: 

 

Assume that   (at least in some regime of ) 

Then, 

 
 

to be solved by minimizing a new cost function 

λ*

⃗T (λ) ≃ ⃗T (λ*) λ

ℒ( ⃗E − ⃗E *)
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• The contribution of nearly-degenerate operators can be 
approximated by effective operators 
[addresses [3]] 
 
 
 

•  Effective high-  operators can also be used to [address [5]] 

 → ``dynamical soft tail’’ 

Different optimization algorithms may treat the soft tail differently!!

Δ
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THE COMPUTATIONAL PROBLEM 

Determine (local) minima of . 

This is a non-convex optimization problem for the CFT data 

(actual+effective)  (order 100-1000 unknowns) 

ℒ( ⃗E − ⃗E *)

{Δn, ℭn} ∈ 𝒮
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PyGMO (Python Parallel Global Multiobjective Optimizer 
Izzo-Biscani —  European Space Agency


SAC (Soft-Actor-Critic) 
developed for task control in robotics



Soft Actor-Critic (SAC) algorithm  
[Harnooja, Zhou, Abbeel, Levine ‘18] 

• Stochastic optimization as a Markov Decision Process 

• Handles continuous actions and state spaces 
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Technical features of the 1d CFT application that follows 

• 2 sets of runs on QMUL HPC Apocrita 
 
 

• 124 CFT data 

• Crossing eqs with up to 260 or 700 derivatives (preloaded in BootSTOP) 

• Machine precision (16 digits)
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Application: 1d defect CFT on Wilson lines 

Infinite straight (1/2-BPS) Wilson line in 4d N=4 SYM 

                         

Local operators  inserted on Wilson line 

Interested in correlation functions 

  

𝒲 = TrPexp∫
∞

−∞
dt (iAt + Φ||)

𝒪(t)

⟨⟨𝒪1(t1)⋯𝒪2(tN)⟩⟩ := ⟨TrWt1
−∞𝒪1(t1)W

t2
t1

𝒪2(t2)⋯𝒪n(tn)W+∞
tn ⟩
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captured by a 1d CFT



Focus on  

•  is one of the 5 transverse scalars of N=4 SYM 

• Planar limit, dependence on the ’t Hooft coupling  

 Definition:        

• Dependence of the 4-point function on the single cross-ratio        

                                          

⟨⟨Φ1
⊥(x1)Φ1

⊥(x2)Φ1
⊥(x3)Φ1

⊥(x4)⟩⟩

Φ1
⊥

λ = g2
YMN

g :=
λ

4π

χ =
x12x34

x13x24
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• Operators are organized in superconformal multiplets 
 
 — protected  
 
 — long  

• OPE:      
                            

• Crossing equation … 
 
                                

ℬk , k = 1,2,… with Δk = k (Φ1
⊥ ∈ ℬ1)

ℒΔ

ℬ1 × ℬ1 = 1 + ℬ2 + ∑
n

ℒΔn

∑
n

C2
n GΔn

(χ) = H(χ)
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known, depends on λ

unknown



Bootstrability    [Cavaglia-Gromov-Julius-Preti, ’21] 

• Use integrability (QSC) to fix (some of the) planar  

• Use bootstrap to determine  

Fix 10 long ’s and 

determine  

Δn

C2
n (Cn := Cℬ1ℬ1ℒΔn)

Δn

C2
1 , C2

2 , C2
3



Strategy 1: Linear functional method   [Cavaglia et al, ’21]
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Strategy 2: Traditional truncation 

• Τruncate to 10 operators with fixed scaling dimensions  

• Μinimize the root mean square cost function  

With linear dependence on the unknowns   this is a 

linear-regression problem 

The results are not impressive

ℭn := C2
n
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Strategy 3: Improved Truncation    
[VN-Papageorgakis-Richmond-Stapleton-Woolley, ’23]
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•  results reproduced quite well  

e.g., at  

 
 
 

• IPOPT & SAC treat the effective spectrum differently. Spread between 
IPOPT-SAC shows correlation with size of SDPB allowed regions 

• SAC mean is surprisingly accurate !! 

C2
1

g = 0.2
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SDPB 0.0663 ± 1.9 x 10-3 

IPOPT 0.066073 ± 4.2 x 10-5 

SAC   0.067339 ± 1.26 x 10-3 

rigorous

statistical



Bootstrability with integrated constraints   [Cavaglia et al, ’22] 

 
Integrated correlators [Drukker et al, ’22] [Cavaglia et al, ’22] yield 2 

extra sum rules for the defect CFT data that depend on g. 

 
Use them to tighten the bootstrap bounds !
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Linear functional method   [Cavaglia et al, ’22]
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Improved Truncation [VN-Papageorgakis-Richmond-Stapleton-Woolley, ’23]
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C2
i

g



  

• Improved truncation performs as well (sometimes even better!) with   

 much less demand on numerical precision (16 vs 1000 digits)

41



• The soft tail works well everywhere from weak to strong coupling! 

• New predictions for higher states are possible  
 (improvements expected with more QSC input) 

• Multiple-correlator bootstrap is cheap and technically possible
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Take home messages 

• Improved truncation methods are flexible, cheap & can be efficient  
 and accurate! 

• We can use them to attack physically interesting situations where 
positivity is absent 

• AI-powered methods may play a useful role 
 — SAC mean is impressively accurate considering the numbers we   
      ran  (200 SAC vs 4 x 108 IPOPT agents) 
 — Better RL implementations? Collaborative AI, e.g. MARL? 
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Some (preliminary results) on the  

6d N=(2,0) superconformal bootstrap 

(without improvements in truncation method) 
[Kantor-VN-Papageorgakis-Richmond] 

• No Lagrangian —only AdS/CFT at  

• A- and D-series theories. Can bootstrap distinguish them? 

 A-series:  

 D-series: 

c → ∞

c = 25 to c = ∞

c = 676 to c = ∞
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Extra slides



Results (lowest protected multiplet “  series”)D



Results (lowest protected multiplet “  series”)D

 series stops hereDN



Results (lowest unprotected multiplet “  series”)D



Results (lowest unprotected multiplet “  series”)D

 series stops hereDN



Results (lowest unprotected multiplet “  series”)D



Results (lowest unprotected multiplet “  series”)D

 series stops hereDN



Results (lowest protected multiplet “  series”)A



Results (lowest unprotected multiplet “  series”)A



Results (lowest unprotected multiplet “  series”)A




