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Introduction

Consider a quantum mechanical system with many degrees of
freedom, such as a spin chain or a quantum field.
Assume it is in the ground state |Ψ⟩, which is a pure state.
The density matrix of the total system is ρtot = |Ψ⟩⟨Ψ|.
Its von Neumann entropy Stot = −trρtot log ρtot vanishes.
Now divide the total system into subsystems A and B and
assume that B is inaccessible to A.
Trace out the part B of the Hilbert space in order to obtain the
reduced density matrix of A: ρA = trBρtot.
The entropy SA = −trAρA log ρA is a measure of the
entanglement between A and B.
It is nonvanishing and SA = SB.
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For spatially separated systems in a static background, the
leading contribution is proportional to the area of the entangling
surface between A and B:

SA ∼ ∂A
ϵd−1 + subleading terms.

Massless scalar field in 3+1 dimensions and a spherical
entangling surface:

SA = s (R/ϵ)2 + c log(R/ϵ) + d
s ≃ 0.3 (scheme-dependent) (Srednicki 1993)

c = −1/90 (universal) (Lohmayer, Neuberger, Schwimmer,
Theisen 2009).
Conformal field theory in 1+1 dimensions, with central charge c:
Finite system of physical length L, divided into two pieces of
lengths ℓ and L − ℓ:

SA =
c
6 ln

(
2L
πϵ

sin
πℓ

L

)
+ c̄′1,

with c̄′1 scheme-dependent. (Calabrese, Cardy 2004)
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How does the entanglement entropy evolve in a time-dependent
background?
de Sitter space (Maldacena, Pimentel 2013).
Relevance for the expanding Universe.
We generalize Srednicki’s approach to expanding backgrounds.
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Expanding the field in momentum modes

Consider a free scalar field ϕ(τ, x) in a FRW background

ds2 = a2(τ)
(
dτ2 − dr2 − r2dΩ2) .

With the definition ϕ(τ, x) = f(τ, x)/a(τ), the action becomes

S =
1
2

∫
dτ d3x

(
f′2 − (∇f)2 +

(
a′′
a − a2m2

)
f2
)
.

The field f(τ, x) has a canonically normalized kinetic term.
For de Sitter: a(τ) = −1/(Hτ) with −∞ < τ < 0, and

S =
1
2

∫
dτ d3x

(
f′2 − (∇f)2 +

2κ
τ2 f2

)
,

where κ = 1 − m2/2H2.
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The eom (Mukhanov-Sasaki equation) in Fourier space is

f′′k + k2fk − 2κ
τ2 fk = 0.

Its general solution is

fk(τ) = A1
√
−τ Jν (−kτ)+A2

√
−τ Yν (−kτ) ν =

1
2
√

1 + 8κ.

Bunch-Davies vacuum: A1 = −
√
π

2 , A2 = −
√
π

2 i. For τ → −∞

fk(τ) ≃
1√
2k

e−ikτ .

For κ = 1 (massless scalar), the full solution reads

fk(τ) =
1√
2k

e−ikτ
(

1 − i
kτ

)
.

For kτ → 0− the mode becomes superhorizon and the oscillations
stop. The mode freezes.
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The quantum field can be expressed as

f̂(τ, x) =
∫ d3k

(2π)3/2

[
fk(τ)âk + f∗k(τ)â

†
k

]
eik·x

where â†k, âk are standard creation and annihilation operators.
For superhorizon modes with kτ → 0− the growing term
dominates and

π̂(τ, x) ≃ −1
τ

f̂(τ, x).

The field and its conjugate momentum commute.
For most of its properties the field can be viewed as a classical
stochastic field.
However, the full quantum field and its conjugate always obey
the canonical commutation relation. This is guaranteed by the
presence of the subleading term in the mode function.
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The entanglement entropy is of purely quantum origin, for which
a classical description is inadequate. It does not vanish for
superhorizon modes.
We are interested in the entanglement between degrees of
freedom localized within two spatial regions separated by an
entangling surface.
For a dS background one may consider the entanglement between
the interior of a horizon-size region of radius 1/H and the
exterior.
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Expanding the field in coordinate space
For spherical entangling surfaces, expand in spherical harmonics
and discretize the radial coordinate as rj = jϵ, 1 ≤ j ≤ N.
UV cutoff: 1/ϵ. IR cutoff: 1/L with L = Nϵ. We set ϵ = 1.
Trace out the oscillators with jϵ < R.
The ‘ground state’ of the system is the product of the ‘ground
states’ of the modes that diagonalize the Hamiltonian.
In the Bunch-Davies vacuum, the ‘ground state’ is the solution of
the Schrödinger equation that reduces to the usual simple
harmonic oscillator ground state as τ → −∞.
The discretized Hamiltonian for the free field during inflation is

H =
1
2ϵ

∑
l,m

N∑
j=1

[
π̃2

lm,j +

(
ω2

lm,j −
2κ

(τ/ϵ)2

)
f̃2lm,j

]
, (1)

where f̃lm,j are the canonical coordinates.
We need to solve for the harmonic oscillator with a
time-dependent eigenfrequency of the form ω2

0 − 2κ/τ2.
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de Sitter era
Oscillator with time-dependent frequency

ω2(τ) = ω2
0 − 2κ

τ2 .

Find the general solution of the Ermakov equation

b′′(τ) + ω2(τ)b(τ) = ω2
0

b3(τ)
.

b(τ) must tend to 1 for τ → −∞.

b2(τ) = −π2ω0τ
(
J2
ν (−ω0τ) + Y2

ν (−ω0τ)
)
.

The solution of the Schrödinger equation can now be expressed as

F(τ, f) = 1√
b(τ)

exp

(
i
2

b′(τ)

b(τ) f2
)

F0
(∫ dτ

b2(τ)
,

f
b(τ)

)
,

where F0(τ, f) is a solution with constant frequency ω0.
For κ > 0 and τ → 0−, we have ∆f/∆π → 0.
Squeezed state.
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Figure: The amplitude of the ‘ground-state’ wave function for ω0 = 5.

N. Tetradis University of Athens
Entangled Universe



Introduction Fields and oscillators The wave function Two oscillators The quantum field Summary

Figure: Left plot: The amplitude of the ‘ground-state’ wave function for the
transition from a dS to a RD background at τ = 0.5, for ω0 = 1, H = 2.
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Figure: Left plot: The amplitude of the ‘ground-state’ wave function for the
transition from a dS to a MD background at τ = 0.5, for ω0 = 1, H = 2.
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Figure: Left plot: The product of uncertainties ∆f∆π during the evolution
of the wave function.
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Entanglement entropy of two quantum oscillators
Hamiltonian (we switched from f to x)

H =
1
2
[
p2

1 + p2
2 + k0(x2

1 + x2
2) + k1(x1 − x2)

2 − λ(τ)(x2
1 + x2

2)
]
.

For oscillators arising from a massive field in dS, λ(τ) = 2κ/τ2.
For a massless field in a general background, λ(τ) = a′′/a.
The Hamiltonian can be rewritten as

H =
1
2
[
p2
+ + p2

− + w2
+(τ)x2

+ + w2
−(τ)x2

−
]
,

x± = x1±x2√
2 , ω2

0+ = k0, ω
2
0− = k0 + 2k1, w2

±(τ) = ω2
0± − λ(τ).

The ‘ground state’ is the tensor product of the ‘ground states’ of
the two decoupled normal modes:

ψ0(x+, x−) =

(
Ω+Ω−

π2

) 1
4

exp

[
−1

2
(
Ω+x2

+ +Ω−x2
−
)
+

i
2
(
G+x2

+ + G−x2
−
)]
,

Ω±(τ) ≡
ω0±

b2(τ ;ω0±)
, G±(τ) ≡

b′(τ ;ω0±)

b(τ ;ω0±)
.
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Express the wave function in terms of x1, x2.
The reduced density matrix is given by

ρ(x2, x′
2) =

∫ +∞

−∞
dx1ψ0(x1, x2)ψ

∗
0(x1, x′

2).

The Gaussian integration gives

ρ(x2, x′
2) =

√
γ − β

π
exp

(
−γ2 (x

2
2 + x′2

2 ) + βx2x′
2

)
exp

(
iδ2 (x

2
2 − x′2

2 )

)
,

where γ, β, δ are functions of Ω±, G±.
The eigenfunctions of the reduced density matrix satisfy∫ +∞

−∞
dx′

2ρ(x2, x′
2)fn(x′

2) = pnfn(x2).

One finds

fn(x) = Hn(
√
αx) exp

(
−α2 x2

)
exp

(
iδ2x2

)
,

where α =
√
γ2 − β2 and Hn is a Hermite polynomial.
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The eigenvalues pn are

pn =

√
2(γ − β)

γ + α

(
β

γ + α

)n
= (1 − ξ)ξn,

where
ξ =

β

γ + α
.

They satisfy
∞∑

n=0
pn = (1 − ξ)

∞∑
n=0

ξn = 1.

The entanglement entropy can be calculated as

S = −
∞∑

n=0
(1 − ξ)ξn ln [(1 − ξ)ξn] = − ln (1 − ξ)− ξ

1 − ξ
ln ξ.
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Figure: Left plot: The entanglement entropy in a dS background as a
function of conformal time τ for ω+ = 1, ω− = 2 and κ =1, 0.5, 0.2, 0, −0.1,
−0.5 (from top to bottom).
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Figure: Left plot: The entanglement entropy as a function of conformal
time τ for ω+ = 1, ω− = 1.5, H = 2 and τ0 = 0.5. The black line
corresponds to a dS background, with a transition at τ0 to either a RD era
(blue line) or to a MD era (red line).
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The reduced density matrix
The generalization to a system of N coupled oscillators proceeds
along the lines of the original work of Srednicki.
The system is assumed to lie in the ground state of each
canonical mode in the asymptotic past (Bunch-Davies vacuum).
Later this becomes a squeezed state, with a wave function that
reflects the horizon crossing and freezing of each mode.
When n oscillators are traced out, the reduced density matrix is

ρ(x2, x′
2) =

(
detRe(γ − β)

πN−n

)1/2

×exp

(
−1

2xT
2 γ x2 −

1
2x′T

2 γ x′
2 + xT

2 β x′
2 +

i
2xT

2 δ x2 −
i
2x′T

2 δ x′
2

)
.

γ and δ are (N − n)× (N − n) real symmetric matrices, while β is
a (N − n)× (N − n) Hermitian matrix.
The eigenvalues of the density matrix do not depend on δ.
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A major technical difficulty arises because the matrices γ and β
cannot be diagonalized through real orthogonal transformations
in order to identify the eigenvalues of the reduced density matrix.
These are guaranteed to be real by the nature of the density
matrix, but the determination of their exact values requires an
extensive analysis.
A method has been developed for their computation. A detailed
presentation is given in the publications.
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Entanglement entropy of a quantum field in 1 + 1 dimensions

Consider a toy model of a massless scalar field in 1 + 1
dimensions. The field is canonically normalized.
Assume a background given by the FRW metric, neglecting the
angular part. The curvature scalar R is equal to −2H2.
The state of a canonical mode in (3+1)-dimensional de Sitter
space can be mimicked by including an effective mass term
through a non-minimal coupling to gravity −Rϕ2/2.
The radiation dominated era can be mimicked by assuming a
transition to a flat background with R = 0 at some time τ0.
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Figure: The entanglement entropy resulting from tracing out the part
n < k ≤ N of a one-dimensional chain at various times, for a dS background.
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For τ → −∞, the entanglement entropy can be described very
well by the expression

S =
c
6 ln

(
2L
πϵ

sin
πℓ

L

)
+ c̄′1, (2)

with c = 1, in agreement with Calabrese, Cardy 2004.
For τ → 0− the entanglement entropy can be described very well
by the expression

S = ln

(
2L a(τ)
πϵ

sin
πℓ

L

)
+ d, (3)

where a(τ) = −1/(Hτ).
The entropy grows with the number of efoldings N = ln a(τ).
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Entanglement entropy of a quantum field in 3 + 1 dimensions
Massless scalar field in 3 + 1 dimensions.
Hamiltonian:

H =
1
2ϵ

∑
l,m

N∑
j=1

[
π2

lm,j +

(
j + 1

2

)2( flm,j+1
j + 1 − flm,j

j

)2

+

(
l (l + 1)

j2 − 2κ
(τ/ϵ)2

)
f2lm,j

]
,

with κ = 1 for dS and κ = 0 for RD.
Trace out the oscillators with jϵ < R.
Sum over l,m.
Fit the result with a function (ϵ = 1)

S = s(τ)R2 + c(τ)R3.

The logarithmic correction is subleading.
N. Tetradis University of Athens
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Choice of UV cutoff

In flat (3+1)-dimensional spacetime the entropy scales ∼ 1/ϵ2,
with ϵ a short-distance cutoff.
There is a certain mode of comoving wavenumber ks which
crossed the horizon at the end of inflation and immediately
re-entered. Modes with wavenumbers k > ks remained
subhorizon at all times.
The modes with k < ks are the ones directly accessible to
experiment and constitute the observable Universe.
The entanglement of interest is between modes with wavelengths
above a UV cutoff ϵ ∼ 1/ks ∼ 1/Hinfl.
Modes that exited the horizon at the end of inflation have a
frequency today f ∼ 108 Hz, which sets the cutoff in the spectrum
of gravitational waves generated by inflation. The corresponding
wavelength is λs ∼ 1 m.
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Results

Figure: The entanglement entropy for a spherical region as a function of the
entangling radius at various times for Hϵ = 1. The radius of the spherical
lattice is L = Nϵ. Results for N = 200 (brown), N = 100 (red), N = 50
(green). We indicate the entropy at the dS to RD transition (black curve)
and the location of the comoving horizon (dashed, red curve).
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Figure: The coefficents s (left plot) and c (right plot) of the quadratic and
cubic term, respectively, as a function of time.
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Summary

Momentum modes that start as pure quantum fluctuations in the
Bunch-Davies vacuum during inflation are expected to freeze
when they exit the horizon and transmute into classical
stochastic fluctuations.
This is only part of the picture. Even though its classical features
are dominant, the field never loses its quantum nature.
The various modes evolve into squeezed states.
The squeezing triggers an enhancement of quantum
entanglement. The effect is visible in the entanglement entropy.
The entanglement entropy survives during the eras of radiation
or matter domination. A volume effect appears during these eras.
Observable consequences?
Weakly interacting, very light fields that stay coherent during the
cosmological evolution (gravitational waves).
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Interpretation of the entropy as thermodynamic? A
quantum-mechanical realization of reheating after inflation.
It is consistent with the quantum to classical transition.
It is intriguing that the appearance of a volume term, a
characteristic feature of thermodynamic entropy, is connected to
the transition to the RD era.
In the case of two oscillators, the reduced density matrix
describing either of the two is that of a single oscillator lying at a
thermal state. For a free field there is no unique temperature.
However, the thermalization hypothesis suggests that in an
interacting theory the reduced density matrix would be thermal.
If we estimate the entropy through the volume term, we get
∼ (H0λs)

−3 ∼ 1078, to be compared with the standard
thermodynamic entropy ∼ 1088 associated with the plasma in the
early Universe, transferred to the photons and neutrinos today.
The notion that the entropy of the Universe can be attributed to
the presence of the cosmological horizon merits further
exploration.
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How to measure entanglement entropy
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