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Large Charge & Semiclassics
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e Compute correlation functions without the use of Feynman
diagrams

¢ Obtain information for the spectrum of the QFT in
strongly coupled regions

Goal

Calculate contributions to the anomalous dimensions the large
charge Og scalar operators by using CF'T data
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Spontaneous Symmetry Breaking (SSB)

Spontaneous symmetry breaking is one of the most interesting
processes in Quantum Field Theory and applies to many
systems in nature (Standard Model, magnets ...)

® SSB occurs when we choose a minimum of a quantity in our
model and this minimun breaks a part of an original theory

G—H, Lo — Ly, G/H : broken generators

Goldstone theorem
The number of broken generators corresponds to the number of
massless fields that appear in the action after SSB.

We can systematically construct the most general
action after SSB using CCWZ method!

Pantelis Panopoulos Gauge Invariance at Large Charge



What we compute with Large Charge Expansion?

Using Large Charge Expansion we can evaluate anomalous
dimensions to infinite order in perturbation theory by using
Effective Field Theory.

Main Idea

® We compute anomalous dimensions of charged scalar
operators exploiting a U(1) global symmetry of the action.
This is achieved by fixing the charge of the Hamiltonian

H—H-—uq@

® We compute the lowest lying operators with @ > 1
® One can show the general formula

_d_ da—2 .
Ag =c1Q 7T 4+ c2Q 31 + quantum corrections...

Large Charge is blind to the operator identification!
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Semiclassical approach (Badel, Cuomo, Monin, Rattazzi 2019 )

e Map the flat space theory on the cylinder R x SP~1

Operator /State Correspondence

Every operator of a CFT corresponds to state on Hilbert space

A
QH|Q>7 fQHEQ

® One can show that the time evolution operator is expressed as
<Q|6_HT‘Q /Dq)e—seff—i-ch'ng(‘ fixing

Expanding around classical solutions — SSB (superfluid phase )

_ v 1 e
(@QIeT1Q) = e o [ Dm0
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Matching of the two computations

Since

(QleM1T|@Q) TR e Pl — e

at the T" — oo saddle point approximation gives the energy on
the cylinder
cyl
_# _ l Dbe™ off+charge fixing
z T—o00
Result:

The results obtained from semiclassical approximation on the
cylinder are matched with the flat space computations on the
Wilson Fisher (WF) fixed point
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Relation between bare and renormalized couplings

The energy in terms of bare and renormalized quantities is
given by

1
RE n :/\—06’,,1 (/\(](2, D) + 6)()()\(](2, D) + Aopeq ()\()(2 D) + ...
1
=56-1(0Q. RM, D) +&(AQ, RM, D) + Aer(AQ, RM, D) + ...,

At the fixed point A, the scaling dimension A is organized as

Agn = %A_I(A*Q) + A0(AQ) + MAT(LQ) + ...

*
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(¢¢)? at WF fixed point on flat space

The action is

L = 0¢d¢ + (¢¢) &= Zybr, Io=pNZy

The S-function in 4 — € is given by

dA
dlog p

= B(\) = —ed + Ba(N)
and the WF fixed point fixed point A, is reached by imposing
B(N\) = 0 and we express the value of the coupling in terms of €

)\* € 3 2
4n)? 5 ' 25

Scaling dimension

B d Q-1 A \2 2072 —2Q —1
A¢Q_Q( >+Q[162 2 *(16772) 4 ]
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Semiclassics for (¢¢)? model

Three steps
® Use Weyl map
[ dPaloof ~ [ aPoy=g(joop + comioP)

(R is Ricci scalar curvature)
® Express ¢(z) = L\/?eixw)

® Impose charge fixing condition

The action reads

Ao )
Sur= [ dPav/=g(500) + 562 ON + e + 50+ )
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¢ Equations of Motion (EOM)

—V2p 4 pl(0x)* + m?] + 6,;5 =0,
Vulp*g" dyx) =0,

P RD-1Q,_,

e Write dynamical fields — (classical solutions+variations)

1
plae) = [ +r(x), x(x)=—ip+ 77 m(z)

where p is the chemical potential...

® Use the representation

<Q‘6_HT’Q> — e—Sd(f,M) X ;/DTDW 6_3(2)(7~7ﬂ-)
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Classical contributions A_;

Plugging the classical solutions to S. we get

3 1 m?
Scl_§<u+m>

Use EOM and solve for the critical point ()

31/3 4+ |9 (/,\1;332
A . Ao @ .
2 —_ 2y — 7() —
w(p m*) = IR0, — | Rt
22/3 [ AQ

Solution

W=

<3§+(x+\/m)§>

33 (:c—|—\/—3—0—;t72)é N 3
(z+vV=3722)°

4A = .
3+ (e 4+ V31 22)°
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Small and Large limits

1/ AQ 1/ 2Q 2 (AQ)?
N 2 <167T2> 2 <167r2) +O( (47)6 >:| ) QK (471')27

2 4/3 2/3
b [i (A*Q> +1</\*Q> +(’)(1)], Q> (4n)2.

As 82 2 \ 872

Identification of operator:

The scaling dimension obtained from semiclassics reproduces the
scaling dimension of ¢@ operator at the WF fixed point in flat space.
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Next to Leading Order

The quadratic action takes the form

(2) e 1 2 1 2 . 2 2y 2
SV = dr [ dQp_1 [fr(—v )+ =m(=VI)m — 2iprd.m + (u© —m)r ]
—1/2 2 2

ewi(l)=Jy+3p* +m*+ \/4,](2/12 + (3u? — m?2)?

[ ] (?0()\()(2, D) = g Z Ty [w+((> + w_ («t”
(=0

L] *VQ = *()ﬁ + (*Ti‘/)—l)

The sum diverges and is regularized using (-regulatization by
subtracting systematically the infinite part concluding to

15 R* + 6u2R2 — 5 1 V3u2R2 — 1
Ng=——2H + O += o) A e
16 2= ~~ V2

> — infinite part
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Small & Large limits

2 3
-3 (367?2) + % <A*Q> +0 ((A»ﬁ?) > M@ < (47)2,

Ao

aJrilo At Axnt v
24 %8\ 32 872

+ {ﬁ— > log (A“?)] (A*”f/s +O(1), AQ> (47)2.

36 8m2 82

o =—0.5753315(3), B = —0.93715(9).
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Massless QED

Consider the action

s= [ ({FR+ (Du0) Do+ 53607

Equations of Motion

I VO
~DFDyé +m?o+ 10 (60)6 =0, P =",
Fixed Point
3
A= (196iz’ 7196) . e =242
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Gauge Invariant Correlators

® The 2-pt function

Go(zp —25) = (81 (2 ) p(24))

violates gauge invariance and we should search for gauge
invariant correlator for the WF

Gauge invariant correlators

Schwinger Line Dirac Line

. ie [0F 4 . . ie (TF qdaa, (x) gk
2-pt function <¢T(Zf)eiwfmi dLMA‘u(l)d)(zi)), <¢>T(mf)eilefm77 A A (@) It d(xi))

Critical exponent ns = 7%6* np = 7%5*

Note that np > ns
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More on Dirac line (Kieinert, Schakel '05)

The current has the form J, = J;L(z —xf) — J;L(z — x;) where

[ dPk k, 4. T(D/2-1)_. 1
J“(z)——z/ (27r)Dﬁe iy 8NZD—2 .

Based on the definitions above
Gp(xf — i) = (Gni(zf) P (i)

where )
¢9 (z) = ¢RI A @) gy

has been proposed as the non-local order parameter for the
superconducting phase transition.

In Landau gauge ¢p;(x) reduces to ¢(x)
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Semiclassics for Abelian Higgs model

® Parametrizing ¢ = p(m)eiX(x) and expanding around v.e.v

o(@) = f4r(z), x(z) = —w+\}f r(@), Au(x) = 04+A,(x)

the classical action is not affected and gives the same A_.

* Essential difference appears at 1-loop order
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Next to Leading Order

The quadratic action of fluctuation is given by

1 1 1 1
5 = [ aPay=g (18R, + 5@ + 5 0um)? = 5 2m® — 1)
— 2iprd,w + efO,m AP — 2iepfrAg + %(e f)QA“A”>

After Higgs mechanism there is a local residual
symmetry

or=0, on=folzx), dA,= féaua(x)

Gauge Fixing via R¢-gauge

5@ o 504) [dPayGa, 6P = (VA" 4 efn)
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The computation reduces to

/DA Do o [ P #(Lrioop(rm A+56) qo (OF
Sa
The quadratic part of the exponential is written
1 .
Ertog =y (V4RI (12 ) O e )
1 V2 +2(p? —m?) —2i 105 r
s (s e (;

1
—2ifurA® +ef <1 — é) Aot

o RW = D 52 g is the Ricci tensor on R x SP—1
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® Represent determinant via ghosts :

det (‘;g) = exp (—/c(—V2 + (ef)?) c)

e Split the gauge field A* = B’ + C" as
V;Bi =0 (k(érn(‘l of Vi), Ct = VI]‘ (image of Vj)

VS,) . scalars vectors
eigenvalues 220({+ D —2) 2z (L(t+D—2)—1)
degeneracies np nA

(20+ D -2 ({+D—2)

) = =T rE T
(+D—2)(20+D—2)T({+D—3)

B I'(t+2)I'(D —-2)

nA (é)
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Evaluation of determinants

edet B=—-0%— V%D_l + % + (ef)?

e Scalar field matrix (r, 7, Ao, B;)

—w? 4 Jez +2(p? —m?) —2ipw —2iepf 0
Zipw —w? + 7 + L2 f? —ef (lfé)w —ief (17§) [ el
—2ienf ef(lf%)w 7%w2+J§+(ef)2 i(lf%)w\.]ﬂ
0 ief (1= 1) 17l i(1=)wlgel o+ LIF ) + (e?
giving

Edet ® = (w+w?)(w +w? ) (w + wi)?
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Field Wy E()
Bi \/J;(U) +(d—2)+e2f? 1
C; VJE+erf? 1

(c,e) VJE+e2f? 0

0
0

Ao N ErT

& \/Jf+3u2—m2+%e2f2:|:\/(3u2—m2—562f2)2+4jfu2

Table: The fields and their energies as a function of the chemical
potentials with a nonvanishing VEV for ¢, ¢. Note that J7 are the
Laplacian scalar eigenvalues and J, EQ(U) are the vector eigenvalues.

Pantelis Panopoulos Gauge Invariance at Large Charge



Next to Leading Order

Following the standard steps of infinity cancelations we obtain
the 1-loop correction

Ao 16( 150t — 6+ 8/617 =2+ 5) + Z (0)

l 1
3e? (p? — 1) (3e? (Tp? +5) + 16729 (5 — 9u?))
204874 g2

where

2
U(@)_(JWZ‘—HHHWWHJ(WWH) o

16m2g 16m2g

P 2
+J3€2(M21)+3u2+g<g+2)1+\J<362(u21)3u2+1> +4g<g+2)u2) (Z+l)2

1672g 1672g

-1 —5ut 4+ 102 + 16121+ 1)(1 4 2) +81(1 4+ 1)u? — 5
)+e(2+2)+17 H n ( 41)( )+ 8l( + Ly

+2e(e+2)\/3e ;”2

9¢2 (#2 - 1) (362 (uz - 1) — 1672g (#2 201 +1) — 1))

+
51274 g2]
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Operator Identification

Results on the cylinder reproduce loop computations on flat
space at the WF fixzed point of the Dirac operator in Landau
gauge 0" A, = 0.

This was unexpected due to np > ng !
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Infinite order results for charged sectors
of the Standard Model

(Antipin, Bersini, P.P, Sannino, Wang, arXiv:2312.12963)

We obtain for the Standard Model the anomalous
dimensions of composite Higgs operators.

In the presence of non-Abelian SU(2)y gauge fields
semiclassical approach is characterized by a vector condensate

Details:
® LO contributions from three generations of quarks and
SU2)w x U(1)y gauge bosons to the scaling dimensions.

® LO and NLO at the global SU(2) limit and operator
identification is demonstrated.

The results are checked against perturbation theory up to three loops
and are found to be in perfect agreement!
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Thank you!

Gauge Invariance at Larg



