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Motivation

▶ String theory comes with:

▶ Extra dimensions (lives in 10d)

▶ Supersymmetry

▶ Moduli fields

▶ Effective perspective: We don’t observe any of the above!

▶ The possibility of constructing effective theories and making the extra
dimensions unobservable turns out to be a rare feature.

▶ We call this feature scale separation
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Our scope

▶ We investigate further classical scale-separated effective theories.

▶ Exploit flux and scaling freedom to create anisotropic internal spaces.

▶ Test them against the distance conjecture.
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EFT from string theory

An elementary starting point is the construction of vacua.

d-dimensional scalar field action:

S =
∫

ddx
√

−g
(1

2
R−

1
2
gij∂µϕ

i∂µϕj + V (ϕ)
)
, Λ = V (ϕ0)

▶ In our universe: d = 4, Λ > 0.

▶ (quasi) de-Sitter from string theory?
U. H. Danielsson, T. Van Riet “What if string theory has no de Sitter vacua?,”
[1804.01120]. ,
D. Andriot “Open problems on classical de Sitter solutions,” [1902.10093].
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Moduli stabilization

Compactification : Method for constructing an EFT at low energies

M10 = Md ×X10−d

where X10−d the "internal" compact space.

Fields appear as moduli: do not have scalar potential

▶ We give them mass, stabilized at VEV
▶ Use classical ingredient, fluxes:

F bg,i
p = ei dy1 ∧ · · · ∧ dyp .

▶ String theory conditions: fluxes should be quantized, e.g.

ei ∼
∫

Σ4

F bg,i4 = (2π
√
α′)3 ×N , with N ∈ Z
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Scale separation
Set the internal space coordinates to be periodical

Φ(xµ, ym) = Φ(xµ, ym + 1)

E.g. for compactification on a circle with radius R

ΦD(xµ, y) =
∑
n

ϕD−1
n (xµ)e

iyn
R →

(
∂µ∂

µ −
(
n

R

)2 )
ϕD−1
n = 0

▶ The lower-dimensional EFT is valid for energies much lower than the
compactification scale.

▶ Qualitative condition to estimate whether there is a large energy gap between
extra dimensional states and the vacuum energy of the EFT

⟨V ⟩
m2

KK
≡
L2

KK
L2

Λ
≪ 0 ,

scales

Planck

String

KK

Exp/ments

CC

Large energy
gap

scales

Planck

String

KK

CC

Large energy
gap
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Classical regime
String theory solution can be described by 10d supergravities when we are at
large volume and weak coupling.

▶ String coupling to be small

gs = e⟨ϕ⟩ < 1 .
▶ Large radii : Much larger compared to string length

ri ≫ ls .

Classical 
solution

Volumes

g−1
s

∞

∞

Image inspired by : Van Riet, Zaccorato [2305.01722]
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Classical scale-separated AdS vacua
The 4d solution: AdS4 ×X6 DeWolfe, Giryavets, Kachru, Taylor [0505160].
The 3d solution: AdS3 ×X7 F.Farakos, Van Riet, G.T [2005.05246].

Common ingredients and features:
▶ Originate from massive type IIA supergravity with smeared O6 planes.
▶ Both give N = 1 4d and 3d supergravity respectively.
▶ Both contain an unbounded flux N → ∞
▶ For N → ∞ they exhibit scale separation and classical solution

Other attempts: Tsimpis [1206.5900], Petrini, Solard, Van Riet [1308.1265],
D.Lüst,Tsimpis [2004.07582], Marchesano, Quirant [1908.11386], Cribiori, Junghans,
Van Hemelryck, Van Riet, Wrase [2107.00019], Van Hemelryck [2207.14311],
Carrasco, Coudarchet, Marchesano, Prieto [2309.00043].

Why AdS?
▶ Is it possible to find solutions with such characteristics from string theory?
▶ SUSY AdS are well controlled : Starting point for dS constructions (e.g. KKLT).

7 / 21



Swampland conjectures
Effective field theory space:

▶ Conjectures disfavor the existence of such constructions, e.g., Gautason, Van
Hemelryck, Van Riet [1810.08518], D. Lüst, Palti, Vafa [1906.05225]

▶ We will test the distance conjecture Ooguri, Vafa [0605264].

"Infinite tower of states become exponentially light at large field distances ∆"

mf (ϕf ) ∼ mi(ϕi)e−γ∆(ϕi,ϕf ) , γ ∼ O(1).
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AdS flux vacua from type IIA
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Massive type IIA supergravity

The bosonic type IIA action (p=0,2,4,6) in the string frame

SIIA =
1

2κ2
10

∫
d10X

√
−G

[
e−2ϕ

(
R10 + 4∂Mϕ∂Mϕ−

1
2

|H3|2
)

−
1
2

∑
p

|Fp|2
]

Op-planes : Span p+ 1 dimensions of the 10d space and wrap internal cycles

SOp = −µOp

∫
dp+1ξ e−ϕ

√
−det (gp+1) + µOp

∫
Cp+1 ,

Relevant Bianchi identity:

dFp = H3 ∧ Fp−2 + µO(8−p)jp+1

∫
Σp+1−−−−−→ h3 fp−2 ∼ −µO(8−p)

Cancel the tadpole properly but also leave the flux of F4 unconstrained.
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From G2-manifold to Toroidal orbifold
G2-manifolds are characterized by the three-form

Φ = e127 − e347 − e567 + e136 − e235 + e145 + e246 ,

We choose the internal space X7 to be a seven-torus with the orbifold Γ:

X7 =
T 7

Z2 × Z2 × Z2

with specific Z2 involutions, see Joyce J.Diff Geom. 43.

Θα : ym → (−y1,−y2,−y3,−y4, y5, y6, y7) ,

Θβ : ym → (−y1,−y2, y3, y4,−y5,−y6, y7) ,

Θγ : ym → (−y1, y2,−y3, y4,−y5, y6,−y7) ,

The vielbein of the torus em = rmdym

Φ = si(x)Φi , Φi =
(

dy127,−dy347,−dy567, dy136,−dy235, dy145, dy246
)
,

where the si are the metric moduli related to the seven-torus radii rm

e127 = s1Φ1 → s1 = r1r2r7 , etc.
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Orientifolds
Target space involutions for the sources (fixed points)

σO2 : ym → −ym , σO6i
: σO2Γ .

In total we have 7 different directions for O6-planes

y1 y2 y3 y4 y5 y6 y7

O6α ⊗ ⊗ ⊗ ⊗ – – –
O6β ⊗ ⊗ – – ⊗ ⊗ –
O6γ ⊗ – ⊗ – ⊗ – ⊗
O6αβ – – ⊗ ⊗ ⊗ ⊗ –
O6βγ – ⊗ ⊗ – – ⊗ ⊗
O6γα – ⊗ – ⊗ ⊗ – ⊗
O6αβγ ⊗ – – ⊗ – ⊗ ⊗

Table: Localized positions "-" and warped directions ⊗ in the internal space.

We get 3d N=1 minimal effective supergravity :

Type IIA supercharges : 32 Γ orbifold−−−−−−→ 4 O2-plane−−−−−→ 2 real
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The 3d effective theory
The 3d bosonic effective action has the form

e−1L =
1
2
R3 −

1
4

(∂x)2 −
1
4

(∂y)2 −
1 + δij

4s̃is̃j
∂s̃i∂s̃j − V (x, y, s̃i)

The scalar potential in 3d supergravity is given by

V (x, y, s̃i) = GIJ∂IP∂JP − 4P 2

For Kähler see: Beasley, Witten [0203061]
We find superpotential P which gives the 3d effective potential:

P =
ey

8

[
e

x√
7

∫
⋆̃Φ ∧H3 vol(X̃7)− 4

7 + e
− x√

7

∫
Φ ∧F4 vol(X̃7)− 3

7

]
+
F0

8
e

1
2 y−

√
7

2 x

The fluxes H3 and F4 are expanded on the Φi and Ψi basis

H3 =
7∑
i=1

hiΦi , F4 =
7∑
i=1

f i Ψi , i = 1, . . . , 7 .
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Tadpole cancellation – Flux ansatz

The relevant tadpole:

0 =
∫

7
(F4,q + F4,f ) ∧H3 +

∫
7

(
NO2µO2 + ND2︸︷︷︸

24

µD2

)
j7

We will use the following flux ansatz:

Flux anisotropic ansatz

hi3 h (1, 1, 1, 1, 1, 1, 0)
f i4,q q (0, 0, 0, 0, 0, 0,−1)
f i4,f f (−1,−1,−1,−1,−1,+5, 0)

For isotropic ansatz, see: F.Farakos, Van Riet, G.T [2005.05246].

▶ The tadpole is canceled while the fluxes "f" and "q" remain unconstrained:∫
7
H3 ∧ F4,q = 0 × (−q) = 0 ,

∫
7
H3 ∧ F4,f = −5hf + 5hf = 0 .
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Scaling of the fluxes – Detailed balance

Equations of motion naively have the form:

(flux1) × (radii1) × (radii2) − (flux2) × (radii2) × (radii3) + · · · = 0

see also Petrini, Solard, Van Riet [1308.1265]

Method: Assume the fluxes and the fields having the following scaling:

f ∼ N , q ∼ NQ , ey ∼ NY , ex ∼ NX , s̃a ∼ NS .

Their scaling becomes:

Y = −
9
2

− 7S , X =
√

7
2

(1 + 2S) , Q = 1 + 7S .

We have created anisotropic scaling to T 7 radii :

{r2
i }i=1,3,5,7 ∼ N

7+11S
8 ×N+3S ,

{r2
i }i=2,4,6 ∼ N

7+11S
8 ×N−2S ,
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Classical regime and scale separation

Large radii: r2
i ≫ 1 → −

1
5
< S <

1
3

Weak coupling: gs = eϕ ∼ N− 3+7S
4 < 0 → S > −

3
7
.

Scale separation: {ri}i=1,3,5,7 :
L2

KK,i

L2
Λ

∼ N−1

{ri}i=2,4,6 :
L2

KK,i

L2
Λ

∼ N−1−7S ,

"on-off"

▶ Large volume, Weak coupling, Scale separation : S = 0

▶ Large volume, Weak coupling, broken-Scale separation : − 1
5 < S ≤ − 1

7
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Landscape of 4d vacua

The effective 4d scalar potential scales in the following way

⟨V ⟩ = −4P 2 ∼ N−4−7S

φ

V(φ)

N=0

N=1

N>>1

For different values of N we get a landscape of disconnected vacua.
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Moduli stabilization

The supersymmetric equations reduce to the following system:

∂P

∂x
=
∂P

∂y
=

∂P

∂s̃a
= 0 ⇒


0 = c− aσ5 + 5σ5τ7 ,

0 = c− aσ4τ − σ6τ ,

0 = −3b+ 2a
(

5
σ

+ 1
τ

)
,

0 = b
2 + a

(
5
σ

+ 1
τ

)
+

(
−5σ + 5τ − c

σ5τ

)
.

where c =
q

f
.

the system is solved for a =
h

f
e

2x√
7 , b =

m0

f
e

− y
2 − 5x

2
√

7 .

c a b ⟨s̃a⟩ = σ ⟨s̃6⟩ = τ

10−1 0.298843 2.44476 0.884523 0.151095
10−3 0.0801704 1.26626 0.458136 0.078259
10−6 0.0111396 0.472009 0.170775 0.0291718
10−9 0.00154785 0.175946 0.0636578 0.0108741
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Interpolation between vacua
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Methodology

▶ We have constructed a landscape of (non)-scale-separated vacua.
▶ To interpolate between vacua : Introduce a space-filling prode D4-brane

G. Shiu, F. Tonioni, V. Van Hemelryck, T. Van Riet [2212.06169].
▶ The D4-brane is codimension-one in the six directions transverse to Ψ7 filled

with flux q ∼ NQ.

t x z y2 y4 y6 y1 y3 y5 y7

D4 ⊗ ⊗ ⊗ ⊛ ⊛ – – – – –
Φ7 – – – ⊗ ⊗ ⊗ – – – –

F4,q ∼ qΨ7 – – – – – – ⊗ ⊗ ⊗ ⊗

Table: A D4-brane fills the AdS3 and wraps 2-cycles inside the 3-cycle Φ7.

dF4,q = QD4δ(ψ − ψ0)dψ ∧ Ψ7 → F4,q ∼
(
NQ + θ(ψ − ψ0)

∣∣∣ψ2>ψ0

ψ1<ψ0

)
Ψ7

The D4-brane induces a change to the flux F4,q ∼ NQ flux on either side of the brane.
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Open string modulus
Let ψ depend on the external coordinates:

ds2
D4 =

(
e2αυg

(3)
µν + s

2
3
7 R

2∂µψ∂νψ

)
dxµdxν + s

2
3
7

(
dR2 +R2(sinψ)2dω2

)
The field metric and potential for ψ are found to be:

gψψ = 2cks̃
4
3
7 e

ϕ
4 −3αv sinψ , V (ψ) ⊃

µD4
8
e

ϕ
4 −21βυs

2/3
7 sinψ

Scalar potentials with discrete choice of fluxes are connected through ψ direction.

see also, Shiu, Tonioni, Van Hemelryck, Van Riet [2311.10828]
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Measuring the distance

Geodesic distance: ∆ =
∫ ξ=1

ξ=0
dξ

√
gAB

dϕA
ds

dϕB
ds

The scalar field space metric components: metric moduli, universal moduli and the
new modulus.

▶ ξ =0 : non-scale-separated regime S ≤ −1/7
▶ ξ =1 : scale-separated regime S = 0 , i.e. F4,f = F4,q

After redefinitions we identify a H2 × R3 space:

∆ ∼
∫ 1

0
dξ

√
1
h2

2

[(dh1

dξ

)2
+

(dh2

dξ

)2
]

+
(du2

dξ

)2
+

(du3

dξ

)2
+

(du4

dξ

)2

We measure the distance parameter to be (for N ∼ 105)

mKK(ξ = 1) ∼ mKK(ξ = 0) e−γ∆ → γ ∼ 0.13
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Conclusion
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Conclusion slide

▶ We discussed AdS SUSY vacua with moduli stabilization and flux
quantization.

▶ We exploited the flux and scaling freedom and canceled the tadpoles and
created anisotropy to the scaling of the internal space.

▶ We constructed new vacua with scale separation and broken scale
separation while remaining in the supergravity regime in the 3d case.

▶ The anisotropic 4d cannot support this feature: scale separation breaks
always outside the classical regime.

▶ Introduced a D4 to interpolate between those vacua and verified the
distance conjecture. The anisotropic cases exhibit better agreement with
the distance conjecture compared to the isotropic ones.
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Thank you!
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Appendix – Backup slides
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Smearing approximation
Smearing approximation

▶ Replace the singular density function with a regular one

δ9−p → j9−p

▶ Local sources are distributed globally all over the cycles

Image:Tomasiello’s talk

▶ Slowly varying dilaton and warp factor, harmonic cycles, Ricci flat internal space

ϕ(y) ≈ ϕ , w(y) ≈ w , dFp = d ⋆ Fp = 0 , Rmn = 0

▶ Fields ignore local backreaction : Not exact field profile.
▶ Simplifies the equations of motion and the potential
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Anisotropic AdS4 flux vacua
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AdS4 with scale-separation
Massive type IIA supergravity on the singular Calabi-Yau limit

X6 =
T 6

Z3 × Z3

DeWolfe, Giryavets, Kachru, Taylor [0505160].

▶ Internal space metric ansatz

ds2
6 =

3∑
i=1

υi(x)
(

(dy2i−1)2 + (dy2i)2
)

▶ Fluxes
F4 = eiw̃

i , H3 = −pβ0 , F0 = m0 .

Relevant Bianchi identity and equations of motions :

0 = H3 ∧ F0 + µO6

∑
jβi

∫
Σ3−−−→ pm0 = ±{1, 2}

0 = H3 ∧ ⋆6F4 → 5-form in CY .

The flux N of F4 is unconstrained!
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Scalings

Quantities expressed in terms of the F4 scalings:

F
(1)
4 ∼ Nf1 , F

(2)
4 ∼ Nf2 , F

(3)
4 ∼ Nf3 .

▶ String coupling

eϕ ∼ N− 1
4 (f1+f2+f3) .

▶ Subvolumes

υ1 ∼ N
1
2 (−f1+f2+f3) , υ2 ∼ N

1
2 (f1−f2+f3) , υ3 ∼ N

1
2 (f1+f2−f3) .

▶ Separation of scales?

L2
KKi

L2
AdS

∼ N−fi , i = 1, 2, 3.
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New flux solutions

1. Scale separation, weak coupling & large volume

υi ≫ 1 , vol ≫ 1 , eϕ < 1 ,
L2

KKi

L2
AdS

≪ 1 ,

as long as

f1 > 0 , 0 < f2 ≤ f1 , f1 − f2 < f3 < f1 + f2 .

e.g. for f1 = f2 = 2 and f3 = 3

υ1 ∼ N3/2 , υ2 ∼ N3/2 , υ3 ∼ N1/2 .

2. Scale separation, weak coupling & one small (shrinking) subvolume

υi < 1 , υj ≫ 1 , vol ≫ 1 , eϕ < 1 ,
L2

KKi

L2
AdS

≪ 1 .

3. Scale separation, weak coupling & small constant subvolumes
4. Broken scale separation, weak coupling & one small subvolume
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