Anisotropic scale-separated AdS flux vacua

George Tringas

Laboratoire d'Annecy-le-Vieux de Physique Théorique (LAPTh)

December 22, 2023

Xmas Theoretical Physics Workshop @ Athens

Based on

- 1. F. Farakos, M. Morittu and G. T, "On/off scale separation," [2304.14372].
- 2. G.T "Anisotropic scale-separated AdS₄ flux vacua," [2309.16542].

Introduction

Motivation

String theory comes with:

- Extra dimensions (lives in 10d)
- Supersymmetry
- Moduli fields
- Effective perspective: We don't observe any of the above!
- The possibility of constructing effective theories and making the extra dimensions unobservable <u>turns out to be a rare feature</u>.
- We call this feature scale separation

Our scope

- ▶ We investigate further *classical* scale-separated effective theories.
- Exploit flux and scaling freedom to create anisotropic internal spaces.
- Test them against the distance conjecture.

EFT from string theory

An elementary starting point is the construction of vacua.

d-dimensional scalar field action:

$$S = \int d^{\mathsf{d}}x \sqrt{-g} \left(\frac{1}{2}R - \frac{1}{2}g_{ij}\partial_{\mu}\phi^{i}\partial^{\mu}\phi^{j} + V(\phi) \right), \qquad \Lambda = V(\phi_{0})$$

- ln our universe: d = 4, $\Lambda > 0$.
- (quasi) de-Sitter from string theory?
 U. H. Danielsson, T. Van Riet "What if string theory has no de Sitter vacua?," [1804.01120]. ,
 D. Andriot "Open problems on classical de Sitter solutions," [1902.10093].

Moduli stabilization

Compactification : Method for constructing an EFT at low energies

$$M_{10} = M_d \times X^{10-d}$$

where X^{10-d} the "internal" compact space.

Fields appear as moduli: do not have scalar potential

- We give them mass, stabilized at VEV
- Use classical ingredient, fluxes:

$$F_p^{\mathsf{bg},i} = e^i \, \mathsf{d} y^1 \wedge \dots \wedge \mathsf{d} y^p$$
.

String theory conditions: fluxes should be quantized, e.g.

$$e^i \sim \int_{\Sigma_4} F_4^{bg,i} = (2\pi \sqrt{\alpha'})^3 \times N\,, \qquad \text{with} \qquad N \in \mathbb{Z}$$

Scale separation

Set the internal space coordinates to be periodical

$$\Phi(x^{\mu}, y^m) = \Phi(x^{\mu}, y^m + 1)$$

E.g. for compactification on a circle with radius \boldsymbol{R}

$$\Phi^D(x^\mu, y) = \sum_n \phi_n^{D-1}(x^\mu) e^{\frac{iyn}{R}} \quad \to \quad \left(\partial_\mu \partial^\mu - \left(\frac{n}{R}\right)^2\right) \phi_n^{D-1} = 0$$

- The *lower-dimensional* EFT is valid for energies much lower than the compactification scale.
- Qualitative condition to estimate whether there is a large energy gap between extra dimensional states and the vacuum energy of the EFT

$$\frac{\langle V \rangle}{m_{\rm KK}^2} \equiv \frac{L_{\rm KK}^2}{L_{\Lambda}^2} \ll 0 \,,$$

Classical regime

String theory solution can be described by 10d supergravities when we are at large volume and weak coupling.

String coupling to be small

$$g_s = e^{\langle \phi \rangle} < 1$$
.

Large radii : Much larger compared to string length

 $r_i \gg l_s$.

Image inspired by: Van Riet, Zaccorato [2305.01722]

Classical scale-separated AdS vacua

The 4d solution: $AdS_4 \times X^6$ DeWolfe, Giryavets, Kachru, Taylor [0505160]. The 3d solution: $AdS_3 \times X^7$ F.Farakos, Van Riet, G.T [2005.05246].

Common ingredients and features:

- Originate from massive type IIA supergravity with smeared O6 planes.
- Both give $\mathcal{N} = 1$ 4d and 3d supergravity respectively.
- ▶ Both contain an unbounded flux $N \to \infty$
- ▶ For $N \to \infty$ they exhibit scale separation and classical solution

Other attempts: Tsimpis [1206.5900], Petrini, Solard, Van Riet [1308.1265], D.Lüst,Tsimpis [2004.07582], Marchesano, Quirant [1908.11386], Cribiori, Junghans, Van Hemelryck, Van Riet, Wrase [2107.00019], Van Hemelryck [2207.14311], Carrasco, Coudarchet, Marchesano, Prieto [2309.00043].

Why AdS?

- Is it possible to find solutions with such characteristics from string theory?
- SUSY AdS are well controlled : Starting point for dS constructions (e.g. KKLT).

Swampland conjectures

Effective field theory space:

- Conjectures disfavor the existence of such constructions, e.g., Gautason, Van Hemelryck, Van Riet [1810.08518], D. Lüst, Palti, Vafa [1906.05225]
- We will test the distance conjecture Ooguri, Vafa [0605264].

"Infinite tower of states become exponentially light at large field distances Δ "

$$m_f(\phi_f) \sim m_i(\phi_i) e^{-\gamma \Delta(\phi_i, \phi_f)}, \qquad \gamma \sim \mathcal{O}(1).$$

AdS flux vacua from type IIA

Massive type IIA supergravity

The bosonic type IIA action (p=0,2,4,6) in the string frame

$$S_{\rm IIA} = \frac{1}{2\kappa_{10}^2} \int {\rm d}^{10} X \sqrt{-G} \Biggl[e^{-2\phi} \left(R_{10} + 4\partial_M \phi \partial^M \phi - \frac{1}{2} |H_3|^2 \right) - \frac{1}{2} \sum_p |F_p|^2 \Biggr] \label{eq:SIIA}$$

 $\ensuremath{\textbf{Op-planes}}$: Span p+1 dimensions of the 10d space and wrap internal cycles

$$S_{{\rm O}p} = -\mu_{{\rm O}p} \int {\rm d}^{p+1}\xi \, e^{-\phi} \sqrt{-{\rm det}\,(g_{p+1})} \ + \ \mu_{{\rm O}p} \int C_{p+1}\,,$$

Relevant Bianchi identity:

$$\mathsf{d}F_p = H_3 \wedge F_{p-2} + \mu_{\mathsf{O}(8-p)} j_{p+1} \qquad \frac{\int_{\Sigma_{p+1}}}{\longrightarrow} \quad h_3 f_{p-2} \sim -\mu_{\mathsf{O}(8-p)}$$

Cancel the tadpole properly but also leave the flux of F_4 unconstrained.

From G2-manifold to Toroidal orbifold

G2-manifolds are characterized by the three-form

$$\Phi = e^{127} - e^{347} - e^{567} + e^{136} - e^{235} + e^{145} + e^{246},$$

We choose the internal space X_7 to be a **seven-torus** with the orbifold Γ :

$$X_7 = \frac{T^7}{\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2}$$

with specific \mathbb{Z}_2 involutions, see Joyce J.Diff Geom. 43.

$$\begin{split} \Theta_{\alpha}: \; y^m &\to (-y^1, -y^2, -y^3, -y^4, y^5, y^6, y^7) \,, \\ \Theta_{\beta}: \; y^m &\to (-y^1, -y^2, y^3, y^4, -y^5, -y^6, y^7) \,, \\ \Theta_{\gamma}: \; y^m &\to (-y^1, y^2, -y^3, y^4, -y^5, y^6, -y^7) \,, \end{split}$$

The vielbein of the torus $e^m=r^m \mathrm{d} y^m$

$$\Phi = s^i(x) \Phi_i \,, \qquad \Phi_i = \left(\mathrm{d} y^{127}, -\mathrm{d} y^{347}, -\mathrm{d} y^{567}, \mathrm{d} y^{136}, -\mathrm{d} y^{235}, \mathrm{d} y^{145}, \mathrm{d} y^{246} \right) \,,$$

where the s^i are the **metric moduli** related to the seven-torus radii r^m

$$e^{127} = s^1 \Phi_1 \ o \ s^1 = r^1 r^2 r^7 \ , \ {
m etc}$$

Orientifolds

Target space involutions for the sources (fixed points)

 $\sigma_{O2}: y^m \to -y^m, \quad \sigma_{O6_i}: \sigma_{O2}\Gamma.$

In total we have 7 different directions for O6-planes

	y^1	y^2	y^3	y^4	y^5	y^6	y^7
Ο6 _α	\otimes	\otimes	\otimes	\otimes	-	-	-
Ο6 _β	\otimes	\otimes	-	-	\otimes	\otimes	-
$O6_{\gamma}$	\otimes	-	\otimes	-	\otimes	-	\otimes
$O6_{\alpha\beta}$	-	-	\otimes	\otimes	\otimes	\otimes	-
$O6_{\beta\gamma}$	-	\otimes	\otimes	-	-	\otimes	\otimes
$O6_{\gamma\alpha}$	-	\otimes	-	\otimes	\otimes	-	\otimes
$O6_{\alpha\beta\gamma}$	\otimes	-	_	\otimes	_	\otimes	\otimes

Table: Localized positions "-" and warped directions \otimes in the internal space.

We get 3d N=1 minimal effective supergravity : Type IIA supercharges : 32 $\xrightarrow{\Gamma \text{ orbifold}}$ 4 $\xrightarrow{O2\text{-plane}}$ 2 real

The 3d effective theory

The 3d bosonic effective action has the form

$$e^{-1}\mathcal{L} = \frac{1}{2}R_3 - \frac{1}{4}(\partial x)^2 - \frac{1}{4}(\partial y)^2 - \frac{1+\delta_{ij}}{4\tilde{s}^i \tilde{s}^j} \partial \tilde{s}^i \partial \tilde{s}^j - V(x, y, \tilde{s}^i)$$

The scalar potential in 3d supergravity is given by

$$V(x, y, \tilde{s}^i) = G^{IJ} \partial_I P \partial_J P - 4P^2$$

For Kähler see: Beasley, Witten [0203061]

We find superpotential P which gives the 3d effective potential:

$$P = \frac{e^y}{8} \left[e^{\frac{x}{\sqrt{7}}} \int \tilde{\star} \Phi \wedge H_3 \operatorname{vol}(\tilde{X}_7)^{-\frac{4}{7}} + e^{-\frac{x}{\sqrt{7}}} \int \Phi \wedge F_4 \operatorname{vol}(\tilde{X}_7)^{-\frac{3}{7}} \right] + \frac{F_0}{8} e^{\frac{1}{2}y - \frac{\sqrt{7}}{2}x}$$

The fluxes H_3 and F_4 are expanded on the Φ_i and Ψ_i basis

$$H_3 = \sum_{i=1}^{7} \mathbf{h}^i \Phi_i, \qquad F_4 = \sum_{i=1}^{7} \mathbf{f}^i \Psi_i, \qquad i = 1, \dots, 7.$$

Tadpole cancellation – Flux ansatz

The relevant tadpole:

$$0 = \int_{7} (F_{4,q} + F_{4,f}) \wedge H_3 + \int_{7} \left(N_{\text{O2}} \mu_{\text{O2}} + \underbrace{N_{\text{D2}}}_{2^4} \mu_{\text{D2}} \right) j_7$$

We will use the following flux ansatz:

Flux	anisotropic ansatz
h_3^i	h(1,1,1,1,1,1,0)
$f_{4,q}^i$	q(0,0,0,0,0,0,-1)
$f_{4,f}^{i}$	f(-1,-1,-1,-1,-1,+5,0)

For isotropic ansatz, see: F.Farakos, Van Riet, G.T [2005.05246].

• The tadpole is canceled while the fluxes "f" and "q" remain unconstrained:

$$\int_{7} H_3 \wedge F_{4,q} = 0 \times (-q) = 0, \qquad \quad \int_{7} H_3 \wedge F_{4,f} = -5hf + 5hf = 0.$$

Scaling of the fluxes – Detailed balance

Equations of motion *naively* have the form:

 $(\mathsf{flux}_1) \times (\mathsf{radii}_1) \times (\mathsf{radii}_2) - (\mathsf{flux}_2) \times (\mathsf{radii}_2) \times (\mathsf{radii}_3) + \cdots = 0$

see also Petrini, Solard, Van Riet [1308.1265]

Method: Assume the fluxes and the fields having the following scaling:

$$\boldsymbol{f} \sim \boldsymbol{N}\,, \quad \boldsymbol{q} \sim \boldsymbol{N}^Q\,, \quad \boldsymbol{e}^y \sim \boldsymbol{N}^Y\,, \quad \boldsymbol{e}^x \sim \boldsymbol{N}^X\,, \quad \tilde{\boldsymbol{s}}^a \sim \boldsymbol{N}^S$$

Their scaling becomes:

$$Y = -\frac{9}{2} - 7S$$
, $X = \frac{\sqrt{7}}{2}(1+2S)$, $Q = 1 + 7S$.

We have created anisotropic scaling to $T^7 \ {\rm radii}$:

$$\begin{split} \{r_i^2\}_{i=1,3,5,7} &\sim N^{\frac{7+11S}{8}} \times N^{+3S} \,, \\ \{r_i^2\}_{i=2,4,6} &\sim N^{\frac{7+11S}{8}} \times N^{-2S} \,, \end{split}$$

Classical regime and scale separation

Large radii:
$$r_i^2 \gg 1 \rightarrow -\frac{1}{5} < S < \frac{1}{3}$$

Weak coupling:
$$g_s = e^\phi \sim N^{-\frac{3+7S}{4}} < 0 \ \rightarrow \ S > -\frac{3}{7} \, .$$

Scale separation:

$$\{r_i\}_{i=1,3,5,7}$$
:
 $\frac{L^2_{\mathsf{KK},i}}{L^2_\Lambda} \sim N^{-1}$
 $\{r_i\}_{i=2,4,6}$:
 $\frac{L^2_{\mathsf{KK},i}}{L^2_\Lambda} \sim N^{-1-7S}$

"on-off"

- Large volume, Weak coupling, Scale separation : S = 0
- ▶ Large volume, Weak coupling, broken-Scale separation : $-\frac{1}{5} < S \leq -\frac{1}{7}$

Landscape of 4d vacua

The effective 4d scalar potential scales in the following way

$$\langle V \rangle = -4P^2 \sim N^{-4-7S}$$

For different values of ${\cal N}$ we get a landscape of disconnected vacua.

Moduli stabilization

The supersymmetric equations reduce to the following system:

$$\frac{\partial P}{\partial x} = \frac{\partial P}{\partial y} = \frac{\partial P}{\partial \tilde{s}^a} = 0 \quad \Rightarrow \quad \begin{cases} 0 &= \mathbf{c} - a\sigma^5 + 5\sigma^5\tau^7 \,, \\ 0 &= \mathbf{c} - a\sigma^4\tau - \sigma^6\tau \,, \\ 0 &= -3b + 2a\left(\frac{5}{\sigma} + \frac{1}{\tau}\right) \,, \\ 0 &= \frac{b}{2} + a\left(\frac{5}{\sigma} + \frac{1}{\tau}\right) + \left(-5\sigma + 5\tau - \frac{\mathbf{c}}{\sigma^5\tau}\right) \,. \end{cases}$$

where
$$c=rac{q}{f}$$
 .

the system is solved for
$$a=rac{h}{f}e^{rac{2x}{\sqrt{7}}}$$
 , $b=rac{m_0}{f}e^{-rac{y}{2}-rac{5x}{2\sqrt{7}}}$

с	a	b	$\langle \tilde{s}^a \rangle = \sigma$	$\langle \tilde{s}^6 \rangle = \tau$
10^{-1}	0.298843	2.44476	0.884523	0.151095
10^{-3}	0.0801704	1.26626	0.458136	0.078259
10^{-6}	0.0111396	0.472009	0.170775	0.0291718
10^{-9}	0.00154785	0.175946	0.0636578	0.0108741

Interpolation between vacua

Methodology

- ▶ We have constructed a landscape of (non)-scale-separated vacua.
- To interpolate between vacua : Introduce a space-filling prode D4-brane G. Shiu, F. Tonioni, V. Van Hemelryck, T. Van Riet [2212.06169].
- ▶ The D4-brane is codimension-one in the six directions transverse to Ψ_7 filled with flux $q \sim N^Q$.

	t	х	z	y^2	y^4	y^6	y^1	y^3	y^5	y^7
D4	\otimes	\otimes	\otimes	*	*	-	-	-	-	-
Φ_7	-	-	-	\otimes	\otimes	\otimes	-	-	-	-
$F_{4,q} \sim q\Psi_7$	-	-	-	-	-	-	\otimes	\otimes	\otimes	\otimes

Table: A D4-brane fills the AdS₃ and wraps 2-cycles inside the 3-cycle Φ_7 .

$$\mathrm{d}F_{4,q} = Q_{\mathsf{D4}}\delta(\psi - \psi_0)\mathrm{d}\psi \wedge \Psi_7 \quad \rightarrow \quad F_{4,q} \sim \left(N^Q + \theta(\psi - \psi_0)\Big|_{\psi_1 < \psi_0}^{\psi_2 > \psi_0}\right)\Psi_7$$

The D4-brane induces a change to the flux $F_{4,q} \sim N^Q$ flux on either side of the brane.

Open string modulus

Let ψ depend on the external coordinates:

$$\mathrm{d} s^2_{\mathsf{D4}} = \left(e^{2\alpha \upsilon} g^{(3)}_{\mu\nu} + s_7^{\frac{2}{3}} R^2 \partial_\mu \psi \partial_\nu \psi \right) \mathrm{d} x^\mu \mathrm{d} x^\nu + s_7^{\frac{2}{3}} \left(\mathrm{d} R^2 + R^2 (\sin\psi)^2 \mathrm{d} \omega^2 \right)$$

The field metric and potential for ψ are found to be:

$$g_{\psi\psi} = 2ck\tilde{s}_7^{\frac{4}{3}}e^{\frac{\phi}{4} - 3\alpha v}\sin\psi\,, \qquad V(\psi) \supset \frac{\mu_{\rm D4}}{8}e^{\frac{\phi}{4} - 21\beta v}s_7^{2/3}{\sin\psi}$$

Scalar potentials with discrete choice of fluxes are connected through ψ direction.

see also, Shiu, Tonioni, Van Hemelryck, Van Riet [2311.10828]

Measuring the distance

Geodesic distance:
$$\Delta = \int_{\xi=0}^{\xi=1} \mathsf{d}\xi \sqrt{g_{AB}} \frac{\mathsf{d}\phi^A}{\mathsf{d}s} \frac{\mathsf{d}\phi^B}{\mathsf{d}s}$$

The scalar field space metric components: metric moduli, universal moduli and the new modulus.

- ▶ $\xi = 0$: non-scale-separated regime $S \leq -1/7$
- $\xi = 1$: scale-separated regime S = 0 , i.e. $F_{4,f} = F_{4,q}$

After redefinitions we identify a $\mathbb{H}^2\times\mathbb{R}^3$ space:

$$\Delta \sim \int_0^1 \mathrm{d}\xi \sqrt{\frac{1}{h_2^2} \left[\left(\frac{\mathrm{d}h_1}{\mathrm{d}\xi}\right)^2 + \left(\frac{\mathrm{d}h_2}{\mathrm{d}\xi}\right)^2 \right] + \left(\frac{\mathrm{d}u_2}{\mathrm{d}\xi}\right)^2 + \left(\frac{\mathrm{d}u_3}{\mathrm{d}\xi}\right)^2 + \left(\frac{\mathrm{d}u_4}{\mathrm{d}\xi}\right)^2}$$

We measure the distance parameter to be (for $N \sim 10^5$)

$$m_{\mathsf{KK}}(\xi=1) \sim m_{\mathsf{KK}}(\xi=0) e^{-\gamma\Delta} \quad \to \quad \gamma \sim 0.13$$

Conclusion

Conclusion slide

- We discussed AdS SUSY vacua with moduli stabilization and flux quantization.
- We exploited the flux and scaling freedom and canceled the tadpoles and created anisotropy to the scaling of the internal space.
- We constructed new vacua with scale separation and broken scale separation while remaining in the supergravity regime in the 3d case.
- The anisotropic 4d cannot support this feature: scale separation breaks always outside the classical regime.
- Introduced a D4 to interpolate between those vacua and verified the distance conjecture. The anisotropic cases exhibit better agreement with the distance conjecture compared to the isotropic ones.

Thank you!

Appendix – Backup slides

Smearing approximation

Smearing approximation

Replace the singular density function with a regular one

$$\delta_{9-p} \rightarrow j_{9-p}$$

Local sources are distributed globally all over the cycles

Image: Tomasiello's talk

Slowly varying dilaton and warp factor, harmonic cycles, Ricci flat internal space

 $\phi(y)\approx \phi\,,\qquad w(y)\approx w\,,\qquad \mathrm{d} F_p=\mathrm{d}\star F_p=0\,,\qquad R_{mn}=0$

- Fields ignore local backreaction : Not exact field profile.
- Simplifies the equations of motion and the potential

Anisotropic AdS_4 flux vacua

AdS_4 with scale-separation

Massive type IIA supergravity on the singular Calabi-Yau limit

$$X^6 = \frac{T^6}{\mathbb{Z}_3 \times \mathbb{Z}_3}$$

DeWolfe, Giryavets, Kachru, Taylor [0505160].

Internal space metric ansatz

$$\mathrm{d} s_6^2 = \sum_{i=1}^3 \upsilon_i(x) \left((\mathrm{d} y^{2i-1})^2 + (\mathrm{d} y^{2i})^2 \right)$$

Fluxes

$$F_4 = e_i \tilde{w}^i$$
, $H_3 = -p\beta_0$, $F_0 = m_0$.

Relevant Bianchi identity and equations of motions :

$$\begin{split} 0 &= H_3 \wedge F_0 + \mu_{\text{O6}} \sum_{j_{\beta_i}} \frac{\int_{\Sigma_3}}{p \, m_0} = \pm \{1, 2\} \\ 0 &= H_3 \wedge \star_6 F_4 \quad \rightarrow \quad \text{5-form in CY} \,. \end{split}$$

The flux N of F_4 is unconstrained!

Scalings

Quantities expressed in terms of the F_4 scalings:

$$F_4^{(1)} \sim N^{f_1}, \qquad F_4^{(2)} \sim N^{f_2}, \qquad F_4^{(3)} \sim N^{f_3}.$$

String coupling

$$e^{\phi} \sim N^{-\frac{1}{4}(f_1 + f_2 + f_3)}$$
.

Subvolumes

$$v_1 \sim N^{\frac{1}{2}(-f_1+f_2+f_3)}, \quad v_2 \sim N^{\frac{1}{2}(f_1-f_2+f_3)}, \quad v_3 \sim N^{\frac{1}{2}(f_1+f_2-f_3)}$$

Separation of scales?

$$\frac{L^2_{\mathsf{KK}_i}}{L^2_{\mathsf{AdS}}} \sim N^{-f_i}\,, \qquad i=1,2,3.$$

New flux solutions

1. Scale separation, weak coupling & large volume

$$\upsilon_i \gg 1\,, \qquad \mathrm{vol} \gg 1\,, \qquad e^\phi < 1\,, \qquad \frac{L^2_{\mathrm{KK}_i}}{L^2_{\mathrm{AdS}}} \ll 1\,,$$

as long as

 $f_1 > 0 \,, \qquad 0 < f_2 \leq f_1 \,, \qquad f_1 - f_2 < f_3 < f_1 + f_2 \,.$

e.g. for
$$f_1 = f_2 = 2$$
 and $f_3 = 3$

 $v_1 \sim N^{3/2}$, $v_2 \sim N^{3/2}$, $v_3 \sim N^{1/2}$.

2. Scale separation, weak coupling & one small (shrinking) subvolume

$$\upsilon_i < 1\,, \qquad \upsilon_j \gg 1\,, \qquad \mathrm{vol} \gg 1\,, \qquad e^\phi < 1\,, \qquad \frac{L^2_{\mathsf{KK}_i}}{L^2_{\mathsf{AdS}}} \ll 1\,.$$

- 3. Scale separation, weak coupling & small constant subvolumes
- 4. Broken scale separation, weak coupling & one small subvolume