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Goal of this course

@ Make a tour of latest improvements in HEP programming languages
e C™"and python
@ Understand

o the use cases of each language
o the evolution of C*+
e how this impacts performances

@ Make a quick tour of python 3 changes
e and help migrating
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Outline
@ Why python and Ct+
@ Pros and Cons of each language
@ Respective usecases

© C'*getting usable
@ Language “simplifications”
@ Making bad code harder to write
© Performant Ct+
@ New performance related features
@ Templates
@ Avoiding virtuality when possible

@ Migrating from Python 2 to python 3
@ Tour of python 3 changes
@ How to support both versions
@ How to migrate

© Conclusion
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@ Why python and Ct+
@ Pros and Cons of each language
@ Respective usecases
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@ Why python and Ct+
@ Pros and Cons of each language
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C*"pros and cons

Adapted to large projects

@ strongly typed, object oriented

@ widely used (and taught) with many available libraries
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C*"pros and cons

Adapted to large projects

@ strongly typed, object oriented
@ widely used (and taught) with many available libraries

e compiled (unlike Java or C#)
@ allows to go close to hardware when needed
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C*"pros and cons

Adapted to large projects
@ strongly typed, object oriented

@ widely used (and taught) with many available libraries

.

e compiled (unlike Java or C#)
@ allows to go close to hardware when needed

.

What we get
@ the most powerful language

@ the most complicated one

@ the most error prone ?

-
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python pros and cons

Adapted to large projects

e multi-paradigm language (object oriented, functional ...)

e widely used (and taught) with many available libraries
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Adapted to large projects
e multi-paradigm language (object oriented, functional ...)
e widely used (and taught) with many available libraries

Easy to use and ubiquitous
@ interpreted, supported on all platforms
@ versatile : usages from ML to web dev or numeric code
@ smooth learning curve, integrated with online tools (SWAN)
@ compatible with CTT critical code can be written in C*Tin the back |
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python pros and cons |

Adapted to large projects

e multi-paradigm language (object oriented, functional ...)

e widely used (and taught) with many available libraries

Easy to use and ubiquitous

@ interpreted, supported on all platforms

@ versatile : usages from ML to web dev or numeric code

@ smooth learning curve, integrated with online tools (SWAN)

@ compatible with CTT critical code can be written in C™Tin the back

The price to pay

@ not suitable for performance

@ error prone (no strong typing)
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Evolving languages |

C*™Tgot 4 major releases in 10 years

C++ standards

Year C++ Standard Informal name
@ oOhe eve ry 3 yea rs 1998 | ISO/IEC 14882:1998(29]
2003 | ISO/IEC 14882:2003(301 | C++03
2011 | ISO/IEC 14882:2011131 | C++11, C++0x

C++98

@ major changes and improvements

2014 | ISO/IEC 14882:2014132] | C++14, C++1y
2017 | ISO/IEC 14882:201733] | C++17, C++1z

C almOSt asnew Ianguage 2020 | ISO/IEC 14882:202012] | C++20, C++2a

V.
python went to version 3

@ major, backward

incompatible changes L —
N
hy——

@ initial release in 2008

o latest release 3.11 : —— .
o widely adopted only o
after 2015 )
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@ Why python and Ct+

@ Respective usecases
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A language for each task

@ The definite winner for performance critical code

@ Also to be used for large, complex frameworks

.

@ The definite winner for configuration
@ Also to be used for “glue code”

@ In general end-user facing code

\
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C*getting usable

© C*Tgetting usable
o Language “simplifications”
@ Making bad code harder to write
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C*getting usable

© C*Tgetting usable
o Language “simplifications”
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C™" is becoming “simpler”

With the C** conception of “simpler”

@ new and much nicer ways to write code

@ backward compatibility insured
e so the language is overall (much) more complex

e

Most noticable features
@ range based loops
@ auto keyword
@ lambdas
@ ranges
0 <=>

-
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Range based loops

Reason of being
@ simplifies loops tremendously

@ especially with STL containers

.

for ( type iteration_variable : container ) {
// body using iteration_variable

}

.

Example code

std: :vector<int> v{1,2,3,4};
int prod = 1;

for (int a : v) { prod *= a; } // pls use std::accumulate
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Auto keyword

@ many type declarations are redundant

@ and lead to compiler error if you mess up
std: :vector<int> v;
int a = v[3];
int b = v.size(); // bug ? unsigned to signed
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Auto keyword

Reason of being
@ many type declarations are redundant
@ and lead to compiler error if you mess up

std: :vector<int> v;
int a = v[3];
int b = v.size(); // bug ? unsigned to signed

.

Practical usage

std: :vector<int> v;

auto a = v[3];

auto b = v.size();

int sum{0};

for (auton : v) { sum += n; }

-
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Lambdas

Definition
a lambda is a function with no name

[captures] (args) -> type { code; }

The type specification is optional

Usage example
int sum = 0, offset = 1;
std: :vector<int> data{1,9,3,8,3,7,4,6,5};
for_each(begin(data), end(data),
[&sum, offset] (int x) {
sum += x + offset;

IR )
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Reason of being
@ provide easy manipulation of sets of data via views

@ simplify the horrible iterator syntax

Based on Unix like pipes, and used in range based loops

Example code -

std: :vector<int> numbers{...};
auto results =
numbers | filter([](int n){ return n % 2 == 0; })
| transform([](int n){ return n * 2; });

for (auto v: results) std::cout << v << " "; )
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So far essentially syntactic sugar

Range based loops

for (int a : v) { sum *= a; }

Translate to iterators

for (auto it = begin(v); it != end(v); it++) {
sum *= *it;

} v
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So far essentially syntactic sugar

Lambdas

[&sum, offset] (int x) { sum += x + offset; }

Are just functors

struct MyFunc {
int& m_sum;
int m_offset;
MyFunc(int& s, int o) : m_sum(s), m_offset(o) {}
void operator(int x) { m_sum += x + m_offset; }
+;
MyFunc (sum, offset)

By the way, as lambdas are functors, they can inherit from each other !
And this can be super useful.
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C*getting usable

© C*Tgetting usable

@ Making bad code harder to write
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The many pitfalls you can fall in

o ugly C syntax, inherited

@ pointers, memory management
@ thread safety issues

@ and locking

@ horrible metaprogramming

@ lack of modularity
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All this has been corrected

Each pitfall is being “solved”

@ ugly C syntax — enum class, std::variant, std::any

@ pointers, memory management — “smart” pointers
thread safety issues — constness
dead locks — “smart” locks

o
o
@ horrible metaprogramming — concepts
o

bad code modularity — modules

Notes :

@ constness is covered in next talk
@ | won't cover concepts and modules
o we would need (much) more time

22 / 65 S. Ponce - CERN




Modern programming languages for HEP

@ CERN
enum class, aka scoped enum

Same syntax as enum, with scope
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enum class VehicleType { Bus, Car };
VehicleType t = VehicleType: :Car;
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enum class, aka scoped enum

SETLE syntax as enum, with scope

enum class VehicleType { Bus, Car };
VehicleType t = VehicleType: :Car;

.

Only advantages over enums

@ scoping avoids name clashes
@ strong typing, no automatic conversion to int

enum VType { Bus, Car }; enum Color { Red, Blue };
VType t = Bus;

if (t == Red) { // We do enter ! }

int a =5 * Car; // Ok, a = 5

enum class VT { Bus, Car }; enum class Col { Red, Blue };

VT t = VT: :Bus;

if (t == Col::Red) { // Compiler error }

int a = t * 5; // Compiler error
23 /65 S Ponce - CERN
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std::variant, std::any

Purpose

@ type safe union and “void*”

@ with visitor pattern
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std::variant, std::any "

Purpose

@ type safe union and “void*”

@ with visitor pattern

Example code -

using Message = std::variant<int, std::string>;
Message createMessage(bool error) {
if (error) return "Error"; else return 42;
}
int i = std::get<int>(createMessage(false));
struct Visitor {
void operator() (int n) const {
std::cout << "Int " << n << std::endl;
}
void operator() (const std::string &s) const {
std::cout << "String \"" << s << "\"" << std::endl;
}
1

std: :visit(Visitor{}, createMessage(true));
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std::variant, std::any

Or you use lambdas and their inheritance -

template <class ... P> struct Combine : P... {
using P::operator()...;

};

template <class ... F> Combine<F...> combine(F... fs) {
return { fs ... };

}

using Message = std::variant<int, std::string>;
Message createMessage(bool error) {
if (error) return "Error"; else return 42;
}
auto f = combine(
[J(int n) { std::cout << "Int " << n << std::endl; I},
[] (string const &s) {
std::cout << "String \"" << g << "\"" << std::endl;
b

std::visit(f, createMessage(true));
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Pointer management : RAII

Resource Acquisition Is Initialization

Use object semantic to acquire/release resources (e.g. memory)

@ wrap the resource inside an object (e.g. a smart pointer)
@ acquire resource via object constructor (call to new)
o release resource in destructor (call to delete)

@ create this object on the stack so that it is automatically destructed
when leaving the scope, including in case of exception
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RAIl in practice

File class

class File {
public:
File(const char* filename)
m_file_handle(std::fopen(filename, "w+")) {

if (m_file_handle == NULL) { throw ... }
}
“File() { std::fclose(m_file_handle); }
+
private:
FILE* m_file_handle;

};

void foo() {
// file opening, aka resource acquisition
File logfile("logfile.txt") ;

// file is automatically closed by the call to
// its destructor, even in case of exzception !

%}




Modern programming languages for HEP

CERN
School of Computing

std::unique_ptr

an RAII pointer

@ wraps a regular pointer
@ has move only semantic
e the pointer is only owned once

@ in <memory> header
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std::unique_ptr

an RAII pointer

@ wraps a regular pointer
@ has move only semantic

e the pointer is only owned once

@ in <memory> header

Usage

void f(std::unique_ptr<Foo> ptr) {}

{
auto uptr = make_unique<Foo>(); // calling constructor
std::cout << uptr->someMember << std::endl;
std::cout << "Points to : " << uptr.get() << std::endl;
f(std: :move(uptr)); // transfer of ownership
// memory is deallocated when f exits

} S -
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std::shared_ptr

shared_ptr : a reference counting pointers

@ wraps a regular pointer like unique_ptr

@ has move and copy semantic

@ uses internally reference counting
e "Would the last person out, please turn off the lights 7"

@ is thread safe, thus the reference counting is costly

.

make_shared : creates a shared_ptr

|

auto sp = std::make_shared<Foo>(); // #ref = 1
vector.push_back(sp); // #ref = 2
set.insert(sp); // #ref = 3

Y // #ref 2 )
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Modern C""and pointers

@ use references rather than pointers
@ no more calls to new or delete

e only make_unique
o exceptionally make_shared

CERN 5

School of Computing

.

void f(Foo const& arg);
auto p = std::make_unique<Foo>();

f(+p);

Consequences
o Forget seg faults due to null pointers

@ Forget memory leaks

30/ 65 S. Ponce - CERN



Modern programming languages for HEP

CERN
School of Computing

RAIIl applied to locking

Wrappers around std: :mutex

std::scoped_lock for any number of locks

std::lock_guard for a single regular lock

@ lock taken on construction
@ released on destruction

@ scoped_lock includes deadlock management

std::unique_lock same as lock_guard and can be released/relocked

int a = 0;

std: :mutex m;

void inc() {
std: :scoped_lock guard{m};
a++;

31}; // Horribly inefficient code !!!

.
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Performant C™"

© Performant C+
@ New performance related features
@ Templates
@ Avoiding virtuality when possible
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Performant C™"

© Performant C+
@ New performance related features
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Features related to performance

Main improvements in CT™"11 and later

@ noexcept

@ around memory allocation
e reserve, emplace, ... See next talk

@ move semantic and copy elision

@ templating and variadic templating
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C™"exception support

After a lot of thinking and experiencing, the conclusions of the
community on exception handling are :

@ Never write an exception specification

@ Except possibly an empty one
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C™"exception support

After a lot of thinking and experiencing, the conclusions of the
community on exception handling are :

@ Never write an exception specification

@ Except possibly an empty one

v

one of the reasons : performance

@ does not allow compiler optimizations

@ on the contrary forces extra checks
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C™"exception support

After a lot of thinking and experiencing, the conclusions of the
community on exception handling are :

@ Never write an exception specification

@ Except possibly an empty one

\.

one of the reasons : performance

@ does not allow compiler optimizations

@ on the contrary forces extra checks

Introducing noexcept

int £() noexcept;

.

@ somehow equivalent to throw()
@ meaning no exception can go out of the function

@ but is checked at compile time

@ thus allowing compiler optimizations
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Impact on generated code - exceptions

Generated code

(

struct MyExcept{};

godbolt , gccl3, -03)
int £(int a); // may throw 4

int foo() {
try {
int a = 23;
return f(a) + f(-a);
} catch (MyExcept& e) {
return O;
}
}
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Impact on generated code - noexcept

struct MyExcept{};

int f(int a) noexcept; Generated code

(godbolt , gccl3, -03)
1 foo():

int foo() {
try {
int a = 23;
return f(a) + f(-a);
} catch (MyExcept& e) {
return O;
}
}
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Move semantics

@ a new type of reference : rvalue references

e used for “moving” objects
e denoted by &&
@ 2 new members in every class, with move semantic :
a move constructor similar to copy constructor
a move assignment operator similar to assignment operator (now
called copy assignment operator)

e used when original object can be reused
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Move semantics

The idea
@ a new type of reference : rvalue references
e used for “moving” objects
e denoted by &&
@ 2 new members in every class, with move semantic :
a move constructor similar to copy constructor
a move assignment operator similar to assignment operator (now
called copy assignment operator)

e used when original object can be reused

V.

T(const T& other); // copy construction
T( T&& other); // mowve construction
T& operator=(const T& other); // copy assignment
T& operator=( T&& other); // move assignment

-
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Move semantics

A few important points concerning move semantic
@ the whole STL can understand the move semantic
@ move assignment operator is allowed to destroy source
e so do not reuse source afterward
@ if not implemented, move falls back to copy version
@ move is called by the compiler whenever possible
e e.g. when passing temporary

CERN
School of Computing
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Move semantics

A few important points concerning move semantic

@ the whole STL can understand the move semantic

@ move assignment operator is allowed to destroy source
e so do not reuse source afterward

@ if not implemented, move falls back to copy version

@ move is called by the compiler whenever possible
e e.g. when passing temporary

.

T a;

Tb = a; // 1. Copy assign
T c=T(2); // 2. Move assign
T d = func(); // 3. Move assign

\_
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Move semantics gains

Essentially targetting containers or fat classes

@ “moving” the content of a vector avoids copying
@ only copies the underlying pointer to the data

@ and is thus essentially as efficient as copying an integer !
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Move semantics gains "

Essentially targetting containers or fat classes
@ “moving” the content of a vector avoids copying
@ only copies the underlying pointer to the data

@ and is thus essentially as efficient as copying an integer !

.

Zero gain for plain structs

@ all members still have to be “copied”

@ move can only help if a member “points” to some other data

.

Transform
float x,y,z; float rot[9];

Transform( Transform&& o )
x(0.x), y(o.y), z(o.2),
rot(o.rot) {}

TransVec TransVec( TransVec&& o )

Transform* trs; trs(o.trs) { o.trs = nullptr; }

40 / 65 S. Ponce - CERN



Modern programming languages for HEP

CERN
School of Computing

Guaranteed copy elision

What is copy elision

struct Foo { ... };
Foo £() {
return Foo();

3

int main() {
// compiler was authorised to elude the copy
Foo foo = £();

by

The elision is guaranteed.

@ superseeds move semantic in some cases
@ so do not hesitate anymore to return plain objects in generators
e and ban pointers for good
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Performant C™"

© Performant C+

@ Templates
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Templates

e The C™*way to write reusable code
e aka macros on steroids

@ Applicable to functions and objects

template<typename T>
const T & max(const T &A, const T &B) {
return A > B 7?7 A : B;

}

template<typename T>
struct Vector {

int m_len;

T* m_data;

};
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Templates

These are really like macros

@ they need to be defined before used
@ so all templated code has to be in headers

@ they are compiled n times

@ and thus each version is optimized individually !

int func(int a) {
(3) return a;

}

template<typename T> |func
T func(T a) {
return a;

N
double func(double a) {
return a;

}

-
Unc(5.2)

}
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Templates

Specialization
templates can be specialized for given values of their parameter

template<typename F, unsigned int N> struct Polygon {
Polygon(F radius) : m_radius(radius) {}
F perimeter() {return 2+#N*sin(PI/N)*m_radius;}
F m_radius;

};

template<typename F>

struct Polygon<F, 6> {
Polygon(F radius) : m_radius(radius) {}
F perimeter() {return 6+*m_radius;}
F m_radius;

};
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@ A library of standard templates
@ Everything you need, or ever dreamed of

e strings, containers, iterators
algorithms, functions, sorters
functors, allocators

Portable
Reusable
Efficient
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@ A library of standard templates
@ Everything you need, or ever dreamed of

e strings, containers, iterators
algorithms, functions, sorters
functors, allocators

Portable
Reusable
Efficient

and adapt it to your needs, thanks to templates
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Performant C™"

© Performant C+

@ Avoiding virtuality when possible
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Virtuality in a nutshell

@ a base class (aka interface) declares some method virtual
@ children can overload these methods (as any other)
@ for these method, late binding is applied

@ that is most precise type is used
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Virtuality in a nutshell

@ a base class (aka interface) declares some method virtual
@ children can overload these methods (as any other)

@ for these method, late binding is applied

@ that is most precise type is used

Polygon p; Shape
p.draw(); // Polygon.draw “void draw();
1
Shape & s = p; Polygon
s.draw(); // Shape.draw “void draw();
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Virtuality in a nutshell

@ a base class (aka interface) declares some method virtual
@ children can overload these methods (as any other)

@ for these method, late binding is applied

@ that is most precise type is used

Polygon p; Shape

p.draw(); // Polygon.draw virtual void draw() = 0;
1

Shape & s = p; Polygon

s.draw(); // Polygon.draw “void draw();
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The price of virtuality

Actual implementation
@ each object has an extra pointer
@ to a ‘virtual table” object in memory

@ where each virtual function points to the right overload

@ extra virtual table in memory, per type

.

@ each virtual call does

e retrieve virtual table pointer

e load virtual table into memory
o lookup right call

o effectively call

@ and is thus much more costful than standard function call

o up to 20% difference in terms of nb of instructions

A\
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Actual price of virtuality

Comparison with templates - /

struct Interface {
virtual void tick(float n) = 0;
g
struct Counter : Interface {
float sum{0};
void tick(float v) override
{ sum += v; }
8
void foo(Interface& c) {
for (int i = 0; i < 80000; ++i) {
for (int j = 0; j < i; ++j) {
c.tick(j);
}
¥
}
int main() {
auto obj = std::make_unique<Counter>()
foo(*obj);
// ... print ...
}

struct Counter {
float sum{0};
void tick(float v) { sum += v; }
};
template<typename CounterType>
void foo(CounterType& c) {
for (int i = 0; i < 80000; ++i) {
for (int j = 0; j < i; ++j) {
c.tick(j);
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Actual price of virtuality "

Comparison with templates - /

struct Interface {
virtual void tick(float n) = 0; struct Counter {
3 float sum{0};

struct Counter : Interface { void tick(float v) { sum += v; }

float sum{0}; s
void tick(float v) override template<typename CounterType>
{ sum += v; } void foo(CounterType& c) {

Ta for (int i = 0; i < 80000; ++i) {
void foo(Interfaceg c) { for (imt j = 0; j < i; ++j) {
for (int i = 0; i < 80000; ++i) { euferleld s
for (int j = 0; j < i; ++j) {
c.tick(j); ¥
} }
} .. . .
} Timing | Time(s) | Nb instr(G)
int mainQ) { ,_virtual | 108 35.2
auto obj = std::make_unique<Counter>();
£o0(*obj) ; templ 2.97 8.9
) e print ... @ measured on EPYC 7552, with gcc 9.1 and perf
y
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A few explanations

Some consequences of virtuality

@ more branching, killing the pipeline
o here 6.4M vs 0.8M branches !
e as virtual calls are branches

@ lack of inlining possibilities

@ lack of optimizations after inlining
e e.g. auto vectorization

CERN
School of Computing

.

Note that the compiler is trying hard to help

@ when it can, when it knows so give it all the knowledge !

@ typical on my example

-
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A few explanations

Some consequences of virtuality

@ more branching, killing the pipeline
o here 6.4M vs 0.8M branches !
e as virtual calls are branches

@ lack of inlining possibilities

@ lack of optimizations after inlining
e e.g. auto vectorization

CERN
School of Computing

.

Note that the compiler is trying hard to help
@ when it can, when it knows so give it all the knowledge !
@ typical on my example
o declare obj on the stack and the compiler will “drop” virtuality
@ again : drop pointers !
e gcc 10/12 does much better : 22/16G instructions and 3s

-
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Should | use virtuality ?

Yes, when you cannot know anything at compile time

Typical cases

@ you have no knowledge of the implementations of an interface
@ new ones may even be loaded dynamically via shared libraries
@ you mix various implementations in a container

e e.g. std::vector<MyInterface>
e and there is no predefined set of implementations
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Should | use virtuality ?

Yes, when you cannot know anything at compile time

Typical cases

@ you have no knowledge of the implementations of an interface
@ new ones may even be loaded dynamically via shared libraries
@ you mix various implementations in a container

e e.g. std::vector<MyInterface>
e and there is no predefined set of implementations

Typical alternatives

@ templates when everything is compile time

e allows full optimization of each case
e and even static polymorphism through CRTP

o Curiously recurring template pattern

@ std::variant, std::any and visitor

e when type definitions are known at compile type

e but not necessary their usage
53 /765 STPohce = CERN



https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

Modern programming languages for HEP

CERN
School of Computing

A Visitor example - godbolt

struct Point { virtual float getR() = 0; };
struct XYZPoint : Point {

float x, y, z;

float getR() override { return std::sqrt(x*x+y*y+z*z); }; };
struct RTPPoint : Point {

float r, theta, phi;

float getR() override { return r; } };
float sumR(std::vector<std::unique_ptr<Point>>& v) {

return std::accumulate(begin(v), end(v), 0.0f,

[&] (float s, std::unique_ptr<Point>& p) { return s + p->getR();} );
}

struct XYZPoint { float x,y,z; }; struct RTPPoint { float r, theta, phi; };
using Point=std::variant<XYZPoint, RTPPoint>;
float sumR(std::vector<Point>& v) {
auto getR = combine(
[1(XYZPoint& p) { return std::sqrt(p.x*p.x+p.y*p.y+p.z*p.z); 1},
[1(RTPPoint& p) { return p.r; });
return std::accumulate(begin(v), end(v), 0.0f,
[¢] (float s, Point& p) { return s + std::visit(getR, p);} );
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A Visitor example - godbolt

struct Point { virtual float getR() = 0;
struct XYZPoint : Point {
float x, y, z; \))6
float getR() override { ret QQ pry+z*z); }; };
struct RTPPoint : Point {
float r, theta, phi; 0‘
xO

float getR() override {
float sumR(std::vector<sta

return std::accumulate(beg , end(v), 0.0f,

[&] (float s, std::unique_ptr<Point>& p) { return s + p->getR();} );
}

struct XYZPoint { float x,y,z; }; struct RJP
using Point=std::variant<XYZPoint, RTPPoj
float sumR(std::vector<Point>& v) {
auto getR = combine(
[1(XYZPoint& p) { return 7 y*p.ytp.z*p.z); },

[J (RTPPoint& p) { return
return std::accumulate(begin
[¢] (float s, Point& p) {

{ float r, theta, phi; };

+ std::visit(getR, p);} );
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Migrating from Python 2 to python 3

@ Migrating from Python 2 to python 3
@ Tour of python 3 changes
@ How to support both versions
@ How to migrate
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Why python 3 ? Should we migrate ?

Reasons for python 3
o rectify fundamental design flaws in python2

@ allow for non backward compatible changes )
Reasons to migrate
o<

Interest over time

JM

@ python3 has clearly taken over

@ python 2 is no more maintained
o official end of life : December 31 2019

@ most libraries have dropped support for python2
e pip, numpy, matplotlib, jupyter, pytorch, ... )
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Migrating from Python 2 to python 3

@ Migrating from Python 2 to python 3
@ Tour of python 3 changes
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Backward incompatible changes

print statement became a function

# python 2 # python 3
print "this is python", 2 print("this is python", 3)

integer division has changed

# python 2 # python 3

assert( 3 / 2 == 1) assert( 3 / 2 == 1.5 )
assert( 3 // 2 ==1) assert( 3 // 2 == 1)

# python 2 # python 3

s = 'string, aka str' s = 'unicode, aka str'
bs = b'string, aka str bs = b'bytes'

us = u'unicode object' us = u'unicode, aka str'
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Removed legacy syntax

Exceptions syntax has changed

# python 2 # python 2 or 3
try: try:
raise ValueError, "msg" raise ValueError ("msg")
except ValueError, e: except ValueError as e:
v
looping on dictionnary changed
# python 2 # python 2 or 3
d ={1:1, 2:2} d = {1:1, 2:2}
for k in d.keys(): ... for k in d:

Many other small points
@ ranges, metaclasses, backticks, imports, input, ...
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Migrating from Python 2 to python 3

@ Migrating from Python 2 to python 3

@ How to support both versions
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Supporting both python2 and python3

Best strategy
@ migrate to python 3
@ make python 3 code compatible with python 2, only if needed !
e by modernizing code
@ “modern” python code is compatible with both 2 and 3
e by extending python2 so that it understands python3 constructs
o through the use of __future__

.

# wvalid both in python 2 and 3

from __future__ import division, print_function
a=3/2

print(a)

# outputs 1.5

v
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Migrating from Python 2 to python 3

@ Migrating from Python 2 to python 3

@ How to migrate
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Migrating code

Use 2to3 or futurize tool

@ provided in python3 distribution

@ “turns code into valid Python 3 code, and then adds __future__
and future package imports to re-enable compatibility with Python 2"

Revalidate every single line by hand...

@ very often generated code is too verbose

@ from time to time, it does not work

@ and python lose type checking does not help

The essential point

Have a damn good test suite with high coverage
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© Conclusion
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Conclusion

Key messages of the day

e C**and python are complementary and compatible

o together they allow for full performance and easiness of use
e they are both evolving

@ When looking for performance, C*'is a must
e and some latest features are key

@ python 3 is now the de factor standard
e convert your code is not yet done
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