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Outline

● Heterogeneous computing
● Trade-offs between multi-core and many-core architectures
● From general to specialized: Hardware accelerators and applications
● Type of workloads ideal for different accelerators
● Implications of heterogeneous hardware on the design and architecture 

of scientific software
● Embarrassingly parallel scientific applications in High Energy Physics

• Processed on Graphics Processing Units (GPUs) 
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Computing performance challenge @ CERN

● In high energy physics, usually assume flat budget for computing cost estimation 
● Can no longer count on a stable increase of CPU processor performance / dollar
● Energy efficiency increasingly important
● Need to exploit heterogeneous systems in scientific applications – following High Performance Computing (HPC)

Courtesy Dr. Bernd Panzer-Steindel
(CERN/IT, CTO) 

CMS Offline and Computing Public Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
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What does “heterogeneous” mean?

● System uses multiple types of computing cores or  processors based on different computer architectures
• Central Processing Units (CPUs)

• Graphics Processing Units (GPUs )

• Application-Specific Integrated Circuits (ASICs)

• Field Programmable Gate Arrays (FPGAs)

• Neural Processing Units (NPUs)

• Tensor Processing Units (TPUs)

● Processors are designed for specific purposes or specialized processing 
→ Assign workloads according to matching characteristics

● Optimize performance and energy efficiency
● “Accelerators” and “co-processors” both describe processors providing computing power in addition to a 

general-purpose processors (typcally a CPU)
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Heterogeneous computing

● Part of our everyday life: (de)compression, encryption, video stream decoding, 3D graphics acceleration, pattern / 
object recognition,  automatic vehicles 

● Accelerator technology often scaled to become a discrete device
• Plug-and-play several components into a heterogeneous architecture

Source: https://www.iti.uni-stuttgart.de/en/chairs/ca/projects/oldprojects/simtech/

https://www.iti.uni-stuttgart.de/en/chairs/ca/projects/oldprojects/simtech/
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Trend towards heterogeneous solutions: TOP500
ARM processors

IBM Power9

Nvidia GPUs

Sunway: combination of Compute Processing Elements
and Management Processing Elements

AMD CPUs

AMD GPUs

Intel CPUs

https://www.top500.org/lists/top500/2022/11/

Matrix-2000 NUDT many-core processors

9/10 systems from the Top500 list 
use accelerators

https://www.top500.org/lists/top500/2022/11/
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Application areas of TOP500 data centers

● Share of data centers (not performance)
● Largest fraction is “Research”
● Last years increase in “Automotive”, “Information 

Service”, “Energy” and “IT Services”

https://www.top500.org/statistics/overtime/

https://www.top500.org/statistics/overtime/
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Accelerators in TOP500 data centers

● Mainly Nvidia GPUs
● Some systems with AMD GPUs (increasing in 

last years)
● Some with processors dedicated to deep 

learning applications

https://www.top500.org/statistics/overtime/

https://www.top500.org/statistics/overtime/
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Heterogeneous solutions & sustainability: Green500

https://www.top500.org/lists/green500/2022/11/

● All top 10 systems from the 
Green500 list use accelerators

● 9/10 are accelerated with 
Nvidia or AMD GPUs

● MN-3 uses an accelerator 
optimized for matrix arithmetic, 
targeting deep learning 
applications

https://www.top500.org/lists/green500/2022/11/
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Energy efficiency

● Energy efficiency increasinly important
• Electricity prices

• Environmental impact

● Powering processors often costs more than buying them
● Definition of power consumption not uniform: 

• Only power delivered to machine

• Power for machine, cooling and monitoring systems

• Average versus peak power consumption 

● Energy efficiency alone can hide increased absolute 
power demands → also consider absolute power

● Energy efficiency has increased less than processing 
power over last decade

Data taken from https://www.top500.org/lists/
Rmax: Maximal LINPACK performance achieved

https://www.top500.org/lists/
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Types of hardware accelerators used in HEP

General purpose 
processors

Graphics Processing Units (GPUs)
Vendors: AMD, Nvidia, Intel

Field Programmable Gate Arrays 
(FPGAs)
Vendors: Xilinx, Altera

Dedicated 
accelerators

Tensor Processing Units (TPUs)
Vendor: Google
Specialized for machine learning

Intelligent Processing Units (IPUs)
Vendor: Graphcore
Specialized for machine learning
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Multi-core versus many-core architecture

Multi-core
● O(10) cores
● Flexible: designed for both serial and parallel code
● Larger caches
● Emphasis on single thread performance

Many-core
● O(100-1000) cores
● Designed for parallel code
● Small caches
● Simpler cores 

Image source

https://www.researchgate.net/figure/Multi-core-and-many-core-processors-Multi-core-processors-as-CPUs-are-devices-composed_fig22_262536613
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Types of workload for multi/many core architectures

● Typically, the main processor is multi-core and paired with a many-core accelerator
● Ensures that both serial and parallel code can be run efficiently
● Multi-core processors are often CPUs

• Legacy code can run on them (albeit with low performance if  not optimized for multi-threading)
• They provide good serial performance

● Many-core processors are typically specialized accelerators
• Individual algorithms / chains of algorithms are developed specifically for the accelerator
• Only highly parallelizable problems are efficiently processed by them
• The most widely used accelerators in science are many-core architectures
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GPUs

Low core count / powerful ALU
Complex control unit
Large chaches
→ Latency optimized

High core count
No complex control unit
Small chaches
→ Throughput optimized

● Developed for graphics pipeline
● General purpose computations 

possible
● Increasingly used for AI applications
● Hardware specialized in this 

direction since few years
● Programmed with high-level 

language
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GPU vs. CPU: Specifications

AMD Ryzen Threadripper 3990X Nvidia A100

Core count 64 cores / 128 threads 6912 cores

Frequency 2.9 GHz 1.41 GHz

Peak Compute Performance 3.7 TFLOPs 19.5 TFLOPs (single precision)

Memory bandwidth Max. 95 GB/s 1.6 TB/s

Memory capacity Max O(1) TB 40/80 GB

Technology 7 nm 7 nm

Die size 717 mm2 826 mm2

Transistor count 3.8 billion 54.2 billion

Model Minimize latency Hide latency through parallelism
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Connectivity with GPU: PCIe connection

PCIe 
generation

1 lane 16 lanes Year of 
announcement

2.0 500 MB/s 8 GB/s 2007

3.0 985 MB/s 15.75 GB/s 2010

4.0 1.97 GB/s 31.5 GB/s 2011

5.0 3.94 GB/s 63 GB/s     2017

6.0 7.56 GB/s 121 GB/s     2019

7.0 15.13 GB/s 242 GB/s     2022

https://en.wikipedia.org/wiki/PCI_Express

https://en.wikipedia.org/wiki/PCI_Express
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FPGAs

● Thousands of logic blocks
● Input/Output blocks
● Connected via programmable interconnect

● Configure a circuit to do the task it is programmed for
→ Hardware implementation of an algorithm

● Fixed latency
● Very good at integer computations
● Does not require a computer to run (has its own I/O)
● Traditionally, programmed with hardware description 

languages (Verilog, VHDL) → long development time
● Increasingly more high-level languages developed

xkcd

Source: National Instruments

https://www.ni.com/fr-fr/innovations/white-papers/08/fpga-fundamentals.html
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GPU vs. FPGA

GPUs
● Higher latency
● Connection via PCIe (or NVLink)
● Bandwidth limited by PCIe

● Very good floating point operation performance
● Lower engineering cost
● Backward / forward compatibility

FPGAs
● Low & deterministic latency
● Connectivity to any data source
● High bandwidth

● Intermediate floating point performance
● High engineering cost
● Not so easy backward compatibility
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CPU – GPU - FPGA

https://arxiv.org/pdf/2003.11491.pdf

Latency Connection Engineering cost FP performance Serial / 
parallel

Memory Backward 
compatibility

CPU O(10) μs Ethernet, 
USB, PCIe

Low entry level: 
Programmable with C++, 
pthon, etc.

O(1-10) TFLOPs Optimized for 
serial, 
increasingly 
vector 
processing

O(100) GB 
RAM

Compatible, 
except for 
vector 
instruction 
sets

GPU O(100) μs PCIe, Nvlink Low to medium entry level: 
Programmable with CUDA, 
OpenCL, etc.

O(10) TFLOPs Optimized for 
parallel 
performance

O(10) GB Compatible, 
exept for 
specific 
features

FPGA Fixed
O(100) ns

Any 
connection 
via PCB

High entry level: 
traditionally hardware 
description languages,
Some high-level syntax 
available

Optimized for 
fixed point 
performance

Optimized for 
parallel 
performance

O(10) MB 
on the 
FPGA itself

Not easily 
backward 
compatible

https://arxiv.org/pdf/2003.11491.pdf
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Types of workloads for different accelerators

GPUs: 
● Relaxed latency requirements
● High FLOPs need
● I/O via PCIe no bottleneck
● Highly parallelizable problem
● Fits within GPU memory

FPGAs:
● Strict latency requirements
● High I/O needs
● Highly parallelizable problem
● Fits within FPGA resources (logic elements 

and memory blocks)

TPUs / IPUs etc.: 
● Machine learning training or inference
● TPUs: Use as a service in the cloud
● IPUs: MIMD compatible problem
● Fit within memory
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Challenges in heterogeneous computing

Challenge Approach

Different architectures Different instruction sets can 
produce results that are not bit-wise 
reproducible

Check requirements of problem at hand: 
What is the minimum required resolution?

Data transmission between devices ● Interconnect can cause 
bandwidth bottleneck

● Data layout: one might not be 
suitable for all device 
architectures and memory 
structures

● Minimize copies between devices
● Minimize transformations between 

data layouts

Programming environments ● Different compilers
● Different APIs

● Use programming environments 
designed for heterogeneous computing 
→ lecture by D. Campora
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Computing needs in HEP

Detector Trigger / 
Real-time analysis

Storage

Simulation Data analysis
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“Trigger”: Real-time data analysis and reduction

accumulate analyze → reduce



D. vom Bruch 24

“Trigger”: Real-time data analysis and reduction

accumulate analyze → reduce

analyze → reduce

analyze → reduce

Large 
data rate
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“Trigger”: Real-time data analysis and reduction

accumulate analyze → reduce

analyze → reduce

analyze → reduce

Large 
data rate

First: Hardware trigger
● Data obtained directly from detector
● Decision taken in fixed time, low latency
● Based on local information from a subdetector
● Chip constraints → not too complex calculations

Second: Software trigger
● Data already transferred to a server
● Decision taken with medium latency
● Based on information from several subdetectors
● Processor constraints less stringent
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Match trigger to hardware

Field Programmable Gate Arrays (FPGAs)
● Low & deterministic latency
● Connectivity to any data source → high bandwidth
● Intermediate floating point performance

CPUs and GPUs
● Higher latency
● Very good floating point performance
● Connected to server (via PCIe connection for GPU)

First: Hardware trigger
● Data obtained directly from detector
● Decision taken in fixed time, low latency
● Based on local information from a subdetector
● Chip constraints → not too complex calculations

Second: Software trigger
● Data already transferred to a server
● Decision taken with medium latency
● Based on information from several subdetectors
● Processor constraints less stringent
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Efficient signal selection

LHCb: Mainly beauty and charm physics

● Signal rates at MHz level
● Signal characteristics: Displaced vertices, momentum, particle type
● → No optimal local criteria for selection

ATLAS & CMS: Mainly Higgs properties, high pT new phenomena 
● Signal rates up to hundreds of kHz
● Signal characteristics: high pT / transverse energy
● → Local criteria for selection possible

Luminosity of 2x1033 cm-2s-1
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Challenge I: Real-time analysis (RTA)

A. Cerri – University of Sussex

LHC long-term schedule
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Overview of GPU usage in various HEP experiments
Experiment Main tasks 

processed on GPU
Event / data rate Number of GPUs Deployment date

CMS Decoding, 
clustering, pattern 
recognition in pixel 

detector

100 kHz O(400) 2022

ALICE Track reconstruction 
in three sub-

detectors

50 kHz Pb-Pb or < 5 
MHz p-p / 30 Tbit/s

O(2000) 2022

LHCb Decoding, 
clustering, track 
reconstruction in 

three sub-detectors, 
vertex 

reconstruction, 
muon ID, selections

30 MHz/ 40 Tbit/s O(250) 2022

https://arxiv.org/pdf/2003.11491.pdf

https://arxiv.org/pdf/2003.11491.pdf
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Overview of GPU usage in various HEP experiments
Experiment Main tasks 

processed on GPU
Event / data rate Number of GPUs Deployment date

CMS Decoding, 
clustering, pattern 
recognition in pixel 

detector

100 kHz O(400) 2022

ALICE Track reconstruction 
in three sub-

detectors

50 kHz Pb-Pb or < 5 
MHz p-p / 30 Tbit/s

O(2000) 2022

LHCb Decoding, 
clustering, track 
reconstruction in 

three sub-detectors, 
vertex 

reconstruction, 
muon ID, selections

30 MHz/ 40 Tbit/s O(250) 2022

https://arxiv.org/pdf/2003.11491.pdf

All experiment needs and environments are quite different 
→ heterogeneous solutions are different

Common points
● Reconstruction algorithms are main candidates for parallelization and off-loading to accelerators
● Scheduling of memory copies, calculations on accelerator, calculations on host server is crucial
● Flexible software frameworks are necessary

https://arxiv.org/pdf/2003.11491.pdf
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Recurrent tasks in real-time data analysis

Raw data decoding
● Transform binary payload from subdetector raw banks into collections of hits (x,y,z) in LHCb coordinate system

Track reconstruction
● Consists of two steps:

• Pattern recognition: Which hits were produced by the same particle? → “Track”

 → Huge combinatorics when testing different combinations of hits
• Track fitting: Describe track with mathematical model

Vertex finding
● Where did proton-proton collisions take place? 
● Where did particles decay within the detector volume?

Calorimeter / muon detector reconstruction
● Reconstruct clusters in the calorimeter / muon detectors
● Match tracks to clusters
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Computational challenge: Track reconstruction

Huge computing challenge for 109 – 1010 tracks / second 

f(x) = … +/- ...

Track fit
● Describe track with mathematical model
● Calculate where it came from and how it 

continues

Pattern recognition
● Which measurements originate from the same particle?            

→ “Track”
● Huge combinatorics when testing different combinations of 

measurements
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By

LHCb’s first level real-time analysis

High Level Trigger 1 (HLT1) tasks
● Decode binary payload of sub-detectors
● Reconstruct charged particle trajectories
● Identify electron and muon particles
● Reconstruct particle decay vertices
● Select proton-proton bunch collisions to store
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LHCb: How does HLT1 map to GPUs?

Characteristics of LHCb HLT1 Characteristics of GPUs

Intrinsically parallel problem:
  - Run events in parallel
  - Reconstruct tracks in parallel

Good for 
  - Data-intensive parallelizable applications 
  - High throughput applications

Huge compute load Many TFLOPS

Full data stream from all detectors is read out 
→ no stringent latency requirements

Higher latency than CPUs, not as predictable as FPGAs

Small raw event data (~100 kB) Connection via PCIe → limited I/O bandwidth

Small event raw data (~100 kB) Thousands of events fit into O(10) GB of memory
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LHCb: The Allen project

● Named after Frances E. Allen

● Fully standalone software project: https://gitlab.cern.ch/lhcb/Allen, documentation
● Framework developed for processing LHCb´s first real-time selection stage (HLT1) on GPUs

● Cross-architecture compatibility via macros & few coding guide lines
• GPU code written in CUDA, runs on CPUs, Nvidia GPUs (CUDA), AMD GPUs (HIP)

● Algorithm sequences defined in python and generated at run-time 
● Multi-event processing with dedicated scheduler
● Memory manager allocates large chunk of GPU memory at start-up
● Reconstruction algorithms re-designed for parallelism and low memory usage: O(MB) per core

● Publications: Comput Softw Big Sci 4, 7 (2020), Technical Design Report (2020), Comput Softw Big Sci 6, 1(2022), 
EPJ Web of Conferences 251, 04009 (2021)

https://en.wikipedia.org/wiki/Frances_E._Allen
https://gitlab.cern.ch/lhcb/Allen
https://allen-doc.docs.cern.ch/index.html
https://link.springer.com/article/10.1007/s41781-020-00039-7
https://cds.cern.ch/record/2717938/files/LHCB-TDR-021.pdf
https://link.springer.com/article/10.1007/s41781-021-00070-2
https://cds.cern.ch/record/2773126/files/document.pdf
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LHCb: Minimize copies to / from GPU

Selection decisions

Server GPU

Raw data
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LHCb: Three levels of parallelization

Intra-collision: Tracks, vertices, ...
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Proton collisions Collision batches
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LHCb: Example algorithm: “Triplet” finder

● Build “triplets” of three hits on consecutive layers → parallelization
● Choose them based on alignment in phi
● Hits sorted by phi → memory accesses as contiguous as possible: data locality
● Extend triplets to next layer → parallelization

Seeding Forwarding Seeding Forwarding

D. Campora et al, “Search by triplet: An efficient local track reconstruction algorithm on parallel architectures”, Journal of Computational Science 54, 101422 (2021)

https://www.sciencedirect.com/science/article/abs/pii/S1877750321001071
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LHCb: GPU HLT1 within data acquisition system

The converged architecture 
significantly reduces the cost of the 

full system
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CMS reconstruction on GPUs

● Several algorithms ported to GPUs for Run 3:
• Track reconstruction in pixel detector

• Primary vertex reconstruction from those tracks

• Calorimeter local reconstruction of ECal and HCal

● Crucial to allow close interlinking of CPU and GPU 
software
→ integrated into CMSSW (arXiv2004.04334)

● Work ongoing for other reconstruction algorithms 

Front. Big Data 3 (2020) 601728

CERN EP software seminar

https://arxiv.org/abs/2004.04334
https://www.frontiersin.org/articles/10.3389/fdata.2020.601728/full
https://indico.cern.ch/event/927838/
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CMS HLT performance with GPUs

● GPU offload increases HLT throughput by 
factor 1.7

● 400 Nvidia Tesla T4 cards in HLT farm

ACAT poster by M. Huwiler

● Event-by-event comparison between CPU 
and GPU results

● Double precision on CPU, single precision 
on GPU

https://indico.cern.ch/event/1106990/contributions/5096916/attachments/2533713/4360082/HLT_GPU_Poster_MH_final.pdf
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Common characteristics of software frameworks

● Same code base compiled for various computing architectures: GPUs, x86,…
● Memory management system for GPU memory: avoid dynamic memory allocation
● Schedule pipelines of GPU (and CPU) algorithms → hide memory copies
● Integration into experiments’ main software frameworks

Allen framework at LHCb Patatrack at CMS O2 at ALICE

https://gitlab.cern.ch/lhcb/Allen
https://github.com/cms-patatrack
https://github.com/AliceO2Group/AliceO2
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Challenge II: Simulation
● Running experiments at higher luminosity leads to large increase in simulation demands
● Projected between 45 and 90 % of CPU usage for simulation
● Large effort ongoing to process simulation on GPUs
● Partially driven by hardware available in HPC centers 

ALICE

See H. Gray’s opening vCHEP talk

Projected needs for Run 3

https://indico.cern.ch/event/948465/contributions/4348790/attachments/2245532/3808347/HeatherCHEP5.pdf
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Simulation: Where to use accelerators?
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Event generators on GPUs
● Madgraph4gpu project: started in 2020 within HSF Generator WG
● Port MC event generators, in particular matrix element calculation (current bottleneck), to GPUs
● Make use of CUDA’s random number generator: cuRAND

VCHEP talk by A. Vallassi Compute Accelerator Forum 02/2023 A. Vallassi

https://indico.cern.ch/event/948465/contributions/4323568/attachments/2246733/3812013/20210519-MGonGPU-vCHEP-AV-010.pdf
https://indico.cern.ch/event/1207838/contributions/5079935/attachments/2590235/4469588/20230208-MG5aMConGPU-CAF-AV-v004.pdf
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Photon simulation with Nvidia OptiX

● Photon simulation is similar to ray tracing problem
→ ideally suited workload for GPU 

● Opticks framework developed for photon simulation, e.g. in a LAr 
TPC

● Uses Nvidia’s OptiX ray tracing engine and integrated with Geant4

Image source

Ray tracing

See S. Blyth’s vCHEP talk

Also IceCube are working on using ray tracing for 
their photon simulation, see this vCHEP talk

http://x-special/nautilus-clipboard%0Acopy%0Afile:///home/vombruch/Documents/tCSC2021/lectures/figures/Illustration-of-basic-ray-tracing.png
https://indico.cern.ch/event/948465/contributions/4324115/attachments/2245809/3808580/opticks_vchep_2021_may19_v2c.pdf
https://indico.cern.ch/event/948465/contributions/4323684/attachments/2246455/3809934/IceCube_CUDA_CHEP21.pdf
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Machine learning: Training

● Large amount of data to handle: high memory bandwidth on GPUs
● Neural networks are embarassingly parallel problems: matrix multiplication
● Many networks can be trained with reduced precision
● Applications in HEP: Pattern recognition, categorization, fast simulation, ...
● Libraries used: Tensorflow, Keras, PyTorch, …
● HSF tutorial on machine learning with GPUs

https://hsf-training.github.io/hsf-training-ml-gpu-webpage/aio/index.html
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Summary

● We are facing a huge computing challenge in HEP, mainly in real-time reconstruction and simulation
● Cannot be solved solely by using CPU processors
● Trend in HPC is towards heterogeneous architectures
● Heterogeneous architectures are crucial for energy efficient systems
● Make use of many-core accelerators for embarrassingly parallel problems within HEP
● Most popular accelerator: GPUs 
● Various experiments have developed and commissioned heterogeneous real-time analysis systems with GPUs
● Extensive R&D also ongoing to use them for simulation 
● Frameworks for heterogeneous software are being developed

● Note: Compute Accelerator Forum organized by HEP Software Foundation, Openlab, SIDIS
Presentations roughly once per month on accelerator topics

https://indico.cern.ch/category/12741/
https://hepsoftwarefoundation.org/
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Backup
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Types of GPUs

Scientific GPUs Gaming GPUs

Precision

~3 times more single precision TFLOPS than 
double precision

→ suited for double precision

~40 times more single precision 
TFLOPS than double precision

→ not well suited for double 
precision

Error correction Available Not available

Connection NVLink & PCIe Only PCIe 
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R&D to use Graphcore’s IPUs

Simulation
● Study usage of IPUs for event generation with fast simulation 

technique
● Particularly suited for machine learning techniques
● Tested event generation with generative networks (GAN)

Track reconstruction
● Also implemented Kalman filter for track fitting on the IPU
● Multiple Instruction Multiple Data (MIMD) architecture
● → Higher performance observed for conditional control-flow 

programs
● No direct comparison to GPU implementation

Computing and Software for Big Science 5, 8 (2021)

https://link.springer.com/article/10.1007/s41781-021-00057-z
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ALICE: Reconstruction on GPUs
● Process 10 ms timeframes, O(10 GB) size
● One detector dominates computing needs: Time Projection Chamber (TPC) 
●  TPC reconstructed in real time on GPUs for compression and calibration since Run 1
● Also adding reconstruction of other detectors to the GPU workflow
● Aiming to process full barrel reconstruction on GPUs
● New facility for data processing and compression – 1500 CPU/GPU nodes, 60 PB storage

See D. Rohr’s vCHEP talk

https://indico.cern.ch/event/948465/contributions/4324179/
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ALICE TPC reconstruction on GPUs

● Run several events in parallel 
● The event size is large, so not too many events fit into GPU memory at once
● Process the sectors of the TPC in parallel
● Same code base for CPU and GPU code

→ can run on either architecture

arxiv 1712.09430

https://arxiv.org/abs/1712.09430
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GPU power efficiency

Theoretical peak FLOPs per Watt, single precision
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Mu3e experiment

● Fixed target experiment at the Paul Scherrer Institute in Switzerland
● Study lepton flavor violating decay μ+  e→ +e-e+

● Triggerless readout @ 10 GB/s, reduce to 100 MB/s with GPU filter farm
● Process 50 ns time slices of data
● Linear track fit for low-momentum particles for real-time data selection implemented on GPUs
● Measured 2∙106 time slices / s on one Nvidia GTX 1080

→ Can do full event selection with 12 GPUs

● Planned to start data-taking in 2023

EPJ Web of conferences, 2017

Mu3e Technical Design Report: arXiv2009:11690

https://www.epj-conferences.org/articles/epjconf/abs/2017/19/epjconf_ctdw2017_00013/epjconf_ctdw2017_00013.html
https://arxiv.org/abs/2009.11690
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GPU power efficiency

Theoretical peak FLOPs per Watt, single precision
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