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Outline

* Heterogeneous computing

* Trade-offs between multi-core and many-core architectures
* From general to specialized: Hardware accelerators and applications
* Type of workloads ideal for different accelerators

* Implications of heterogeneous hardware on the design and architecture
of scientific software

* Embarrassingly parallel scientific applications in High Energy Physics
Processed on Graphics Processing Units (GPUs)
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Computing performance challenge @ CERN
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Courtesy Dr. Bernd Panzer-Steindel CMS Offline and Computing Public Results

(CERN/IT, CTO)
In high energy physics, usually assume flat budget for computing cost estimation
Can no longer count on a stable increase of CPU processor performance / dollar
Energy efficiency increasingly important

Need to exploit heterogeneous systems in scientific applications — following High Performance Computing (HPC)
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What does "heterogeneous” mean?

* System uses multiple types of computing cores or processors based on different computer architectures
Central Processing Units (CPUs)

Graphics Processing Units (GPUs )
Application-Specific Integrated Circuits (ASICs)
Field Programmable Gate Arrays (FPGASs)
Neural Processing Units (NPUs)
Tensor Processing Units (TPUs)
* Processors are designed for specific purposes or specialized processing
- Assign workloads according to matching characteristics
* Optimize performance and energy efficiency

* “Accelerators” and “co-processors” both describe processors providing computing power in addition to a
general-purpose processors (typcally a CPU)
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Heterogeneous computing

* Part of our everyday life: (de)compression, encryption, video stream decoding, 3D graphics acceleration, pattern /
object recognition, automatic vehicles

* Accelerator technology often scaled to become a discrete device

Plug-and-play several components into a heterogeneous architecture

Heterogeneous and Reconfigurable Computer Architecture
{ CPU CPU I CPU
Reconfig
CPU Memory CPU -urable
Memory Memory Unit
ERL CPU CPU
/O DSP DsP
Data-parallel Multicore CPU Reconfigurable

Source: https://www.iti.uni-stuttgart.de/en/chairs/ca/projects/oldprojects/simtech/
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Trend towards heterogeneous solutions: TOP500
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Sunway: combination of Compute Processing Elements
and Management Processing Elements

Nvidia GPUs

9/10 systems from the Top500 list
use accelerators

AMD GPUs

AMD CPUs

Intel CPUs

https://www.top500.org/lists/top500/2022/11/
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Application areas of TOP500 data centers

Application Area - Systems Share . Research Others

IT Services . Energy

. Weather and Climate Research . Software

. Services . Information Service

B serospace Logistic Services

|| Electronics [ Web Services

[ Information Processing Service [ Finance

. Semiconductor Chemistry

. Automative . Telecommunication
Geophysics . Database

._ Defense

snare

* Share of data centers (not performance)
* Largest fraction is “Research”

* Lastyearsincrease in “Automotive”, “Information
Service”, “Energy” and “IT Services”

2008 2010 2012 2014 2016 2018 2020 2022

https://www.top500.org/statistics/overtime/ D. vom Bruch
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Accelerators in TOP500 data centers
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Mainly Nvidia GPUs

Some systems with AMD GPUs (increasing in
last years)

Some with processors dedicated to deep
learning applications
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Heterogeneous solutions & sustainability: Green500

Green500 Data
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52.227

51.382

41.4m

40.901

38.555

All top 10 systems from the
Green500 list use accelerators

9/10 are accelerated with
Nvidia or AMD GPUs

MN-3 uses an accelerator
optimized for matrix arithmetic,
targeting deep learning
applications

https://www.top500.org/lists/green500/2022/11/
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Energy efficiency

* Energy efficiency increasinly important
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Data taken from https://www.top500.org/lists/
Rmax: Maximal LINPACK performance achieved
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Types of hardware accelerators used in HEP

General purpose

Graphics Processing Units (GPUs)
Vendors: AMD, Nvidia, Intel

Field Programmable Gate Arrays
(FPGASs)
Vendors: Xilinx, Altera

processors
Tensor Processing Units (TPUs) Intelligent Processing Units (IPUs)
Dedicated Vendor: Google Vendor: Graphcore
accelerators Specialized for machine learning Specialized for machine learning

D. vom Bruch
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Multi-core versus many-core architecture

Multi-core

* O(10) cores

* Flexible: designed for both serial and parallel code

* Larger caches

* Emphasis on single thread performance

Image source

-~

CcPU

~
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Many-core
* O(100-1000) cores
* Designed for parallel code
* Small caches

* Simpler cores

GPU
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https://www.researchgate.net/figure/Multi-core-and-many-core-processors-Multi-core-processors-as-CPUs-are-devices-composed_fig22_262536613

Types of workload for multi/many core architectures

* Typically, the main processor is multi-core and paired with a many-core accelerator
* Ensures that both serial and parallel code can be run efficiently

* Multi-core processors are often CPUs
Legacy code can run on them (albeit with low performance if not optimized for multi-threading)

They provide good serial performance

* Many-core processors are typically specialized accelerators

Individual algorithms / chains of algorithms are developed specifically for the accelerator
Only highly parallelizable problems are efficiently processed by them

The most widely used accelerators in science are many-core architectures

D. vom Bruch
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GPUs

Developed for graphics pipeline

General purpose computations
possible

Increasingly used for Al applications

Hardware specialized in this
direction since few years

Programmed with high-level
language

Interconnect

)
g
c

Low core count / powerful ALU
Complex control unit

Large chaches

> Latency optimized

D. vom Bruch

High core count

No complex control unit
Small chaches

- Throughput optimized

14



GPU vs. CPU: Specifications

AMD Ryzen Threadripper 3990X Nvidia A100
Core count 64 cores [ 128 threads 6912 cores
Frequency 2.9 GHz 1.41 GHz
Peak Compute Performance 3.7 TFLOPs 19.5 TFLOPs (single precision)
Memory bandwidth Max. 95 GB/s 1.6 TB/s -
Memory capacity Max O(1) TB 40/80 GB
Technology 7 nm 7 nm
Die size 717 mm? 826 mm?
Transistor count 3.8 billion 54.2 billion

Model

Minimize latency

D. vom Bruch

Hide latency through parallelism
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Connectivity with GPU: PCle connection

PCle 1lane 16 lanes Year of
generation announcement
2.0 500 MB/s 8 GB/s 2007
3.0 985 MB/s 15.75 GB/s 2010
4.0 1.97 GB/s 31.5 GB/s 2011
5.0 3.94 GB/s 63 GB/s 2017
6.0 7.56 GB/s 121 GB/s 2019
7.0 15.13 GB/s 242 GB/s 2022

https://en.wikipedia.org/wiki/PCI_Express D. vom Bruch 16
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FPGASs

Thousands of logic blocks
Input/Output blocks
Connected via programmable interconnect

Configure a circuit to do the task it is programmed for
- Hardware implementation of an algorithm

Fixed latency

Very good at integer computations

Does not require a computer to run (has its own 1/O)

Traditionally, programmed with hardware description
languages (Verilog, VHDL) - long development time

Increasingly more high-level languages developed
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https://www.ni.com/fr-fr/innovations/white-papers/08/fpga-fundamentals.html

GPU vs. FPGA

GPUs FPGAs

Higher latency PN * Low & deterministic latency

Connection via PCle (or NVLink) ["’:'\ * Connectivity to any data source

Bandwidth limited by PCle w * High bandwidth

Very good floating point operation performance * Intermediate floating point performance

Lower engineering cost * High engineering cost (: _:
Backward / forward compatibility ' * Not so easy backward compatibility w

D. vom Bruch 18



CPU-GPU - FPGA

Latency Connection | Engineering cost FP performance Serial / Memory Backward
parallel compatibility
CPU O(10) ps Ethernet, Low entry level: O(1-10) TFLOPs Optimized for | O(100) GB | Compatible,
USB, PCle Programmable with C++, serial, RAM except for
pthon, etc. increasingly vector
vector instruction
processing sets
GPU O(100) us PCle, Nvlink | Low to medium entry level: | O(10) TFLOPs Optimized for | O(10) GB Compatible,
Programmable with CUDA, parallel exept for
OpenCL, etc. performance specific
features
FPGA Fixed Any High entry level: Optimized for Optimized for | O(10) MB Not easily
O(100) ns connection traditionally hardware fixed point parallel on the backward
via PCB description languages, performance performance FPGA itself | compatible
Some high-level syntax
available
D. vom Bruch 19
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Types of workloads for different accelerators

GPUs:
* Relaxed latency requirements
* High FLOPs need
* 1/O via PCle no bottleneck
* Highly parallelizable problem
* Fits within GPU memory

FPGAs:
* Strict latency requirements
* High1/O needs
* Highly parallelizable problem

* Fits within FPGA resources (logic elements
and memory blocks)

TPUs / IPUs etc.:

Machine learning training or inference
TPUs: Use as a service in the cloud
IPUs: MIMD compatible problem

Fit within memory

D. vom Bruch 20



Challenges in heterogeneous computing

Challenge

Approach

Different architectures

Different instruction sets can
produce results that are not bit-wise
reproducible

Check requirements of problem at hand:
What is the minimum required resolution?

Data transmission between devices

* Interconnect can cause
bandwidth bottleneck

* Data layout: one might not be
suitable for all device
architectures and memory
structures

* Minimize copies between devices
* Minimize transformations between
data layouts

Programming environments

* Different compilers
* Different APIs

D. vom Bruch

* Use programming environments
designed for heterogeneous computing
> lecture by D. Campora
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Computing needs in HEP

Trigger/
Real-time analysis

Detector

Entries / (0.004 GeV?)

N
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"Trigger”: Real-time data analysis and reduction
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"Trigger”: Real-time data analysis and reduction

X analyze - reduce
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"Trigger”: Real-time data analysis and reduction

CEZEzrzs=z=z=g
e

L P - First: Hardware trigger
» X_Pp * Data obtained directly from detector

* Decision taken in fixed time, low latency

B3

* Based on local information from a subdetector
Large

data rate * Chip constraints » not too complex calculations

ey B

Second: Software trigger

Iron return yoke nters persed
‘with Muon chambers

* Data already transferred to a server

* Decision taken with medium latency
* Based oninformation from several subdetectors
* Processor constraints less stringent

D. vom Bruch 25
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Match trigger to hardware

First: Hardware trigger

Data obtained directly from detector

Decision taken in fixed time, low latency
Based on local information from a subdetector

Chip constraints - not too complex calculations

Field Programmable Gate Arrays (FPGAs)
Low & deterministic latency
Connectivity to any data source - high bandwidth

Intermediate floating point performance

D. vom Bruch

Second: Software trigger

Data already transferred to a server

Decision taken with medium latency

Based on information from several subdetectors

Processor constraints less stringent

CPUs and GPUs
Higher latency
Very good floating point performance

Connected to server (via PCle connection for GPU)

26



Efficient signal selection
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. http://www.hep.ph.ic.ac.uk/~wstirin/plots/plots.html
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LHCb: Mainly beauty and charm physics

* Signal rates at MHz level
* Signal characteristics: Displaced vertices, momentum, particle type
* > No optimal local criteria for selection

N\

>

ATLAS & CMS: Mainly Higgs properties, high p_new phenomena

* Signal rates up to hundreds of kHz
* Signal characteristics: high pT / transverse energy
* - Local criteria for selection possible

\_

D. vom Bruch
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Challenge I: Real-time analysis (RTA)
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Overview of GPU usage in various HEP experiments

Experiment Main tasks Event [ data rate Number of GPUs Deployment date
processed on GPU
CMS Decoding, 100 kHz 0O(400) 2022
clustering, pattern
recognition in pixel
detector
ALICE Track reconstruction | 50 kHz Pb-Pbor <5 0(2000) 2022
in three sub- MHz p-p / 30 Tbit/s
detectors
LHCb Decoding, 30 MHz/ 40 Thit/s 0(250) 2022

clustering, track
reconstruction in
three sub-detectors,
vertex
reconstruction,
muon ID, selections

D. vom Bruch
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Overview of GPU usage in various HEP experiments

Experiment Main tasks Event / data rate Number of GPUs Deployment date
processed on GPU
CMS Decoding, 100 kHz O(400) 2022

/ All experiment needs and environments are quite different
- heterogeneous solutions are different

Common points

\- Flexible software frameworks are necessary

* Reconstruction algorithms are main candidates for parallelization and off-loading to accelerators
* Scheduling of memory copies, calculations on accelerator, calculations on host server is crucial

~

J

vertex
reconstruction,
muon ID, selections

D. vom Bruch
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Recurrent tasks in real-time data analysis

Raw data decoding

* Transform binary payload from subdetector raw banks into collections of hits (x,y,z) in LHCb coordinate system
Track reconstruction

* Consists of two steps:

*  Pattern recognition: Which hits were produced by the same particle? » “Track”
- Huge combinatorics when testing different combinations of hits

Track fitting: Describe track with mathematical model

53
o
N

Vertex finding

* Where did proton-proton collisions take place?

7N O W
\H\‘UH‘HH‘HH‘HH‘HH‘,H

* Where did particles decay within the detector volume?

o) Y

Calorimeter / muon detector reconstruction

* Reconstruct clusters in the calorimeter /| muon detectors

* Match tracks to clusters

D. vom Bruch 31



Computational challenge: Track reconstruction

Pattern recognition Track fit
*  Which measurements originate from the same particle? * Describe track with mathematical model
> "Track * Calculate where it came from and how it
* Huge combinatorics when testing different combinations of continues
measurements
f(x) = ... +/-
- . . AN
(a.b
N
e S
——& 4§ —
\

Huge computing challenge for 10° - 10%° tracks / second

D. vom Bruch
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LHCDb's first level real-time analysis

High Level Trigger 1 (HLT1) tasks

Decode binary payload of sub-detectors

Side View ECAL HCAL

SciFi ~ RICH2

Reconstruct charged particle trajectories

Identify electron and muon particles
Reconstruct particle decay vertices

Select proton-proton bunch collisions to store

innermost layer ————————» outermost layer
tracking electromagnetic hadronic  muon
system calorimeter calorimeter system

N

\

photons
—_—

electrons
—_—

—_—

©
(&)1

[x 0.2mm]
muons —

V) f\
protons =1
Kaons 2—]
pions =

15—
neutrons —

Ke 3

!\1![!!!\1!1[[\\\\llf\[\\ll[\nlf\
1 2 3 4 5 6

D. vom Bruch 33



LHCb: How does HLT1 map to GPUs?

Characteristics of LHCb HLT1 Characteristics of GPUs
Intrinsically parallel problem: Good for
- Run events in parallel - Data-intensive parallelizable applications
- Reconstruct tracks in parallel - High throughput applications
Huge compute load Many TFLOPS
Full data stream from all detectors is read out Higher latency than CPUs, not as predictable as FPGAs

- no stringent latency requirements

Small raw event data (~100 kB) Connection via PCle - limited I/O bandwidth

Small event raw data (~100 kB) Thousands of events fit into O(10) GB of memory

D. vom Bruch 34



LHCb: The Allen project

* Named after Frances E. Allen

* Fully standalone software project: https://gitlab.cern.ch/lhcb/Allen, documentation

* Framework developed for processing LHCb s first real-time selection stage (HLT1) on GPUs

* Cross-architecture compatibility via macros & few coding guide lines
GPU code written in CUDA, runs on CPUs, Nvidia GPUs (CUDA), AMD GPUs (HIP)

* Algorithm sequences defined in python and generated at run-time
* Multi-event processing with dedicated scheduler
* Memory manager allocates large chunk of GPU memory at start-up

* Reconstruction algorithms re-designed for parallelism and low memory usage: O(MB) per core

* Publications: Comput Softw Big Sci 4, 7 (2020), Technical Design Report (2020), Comput Softw Big Sci 6, 1(2022),
EPJ Web of Conferences 251, 04009 (2021)
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https://cds.cern.ch/record/2773126/files/document.pdf

LHCb: Minimize copies to / from GPU

Server

Raw data

Selection decisions

GPU

D. vom Bruch
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LHCb: Three levels of parallelization

Intra-collision: Tracks, vertices, ... Proton collisions Collision batches

D. vom Bruch 37



LHCb: Example algorithm: “Triplet” finder

Seeding — > Forwarding — > Seeding - Forwarding
[ ® Coc
Coa Window e "Coa ‘ ,} ............... ) < ®
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D. Campora et al, “Search by triplet: An efficient local track reconstruction algorithm on parallel architectures”, Journal of Computational Science 54, 101422 (2021)

* Build “triplets” of three hits on consecutive layers - parallelization
* Choose them based on alignment in phi
* Hits sorted by phi » memory accesses as contiguous as possible: data locality

* Extend triplets to next layer > parallelization
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https://www.sciencedirect.com/science/article/abs/pii/S1877750321001071

LHCb: GPU HLT1 within data acquisition system

32 Tb/s

CPU+RAM1 CPU+RAMZ | T
RU | |BU )

200G I1B

100GbE

1
=
]

1Tb/s

103€13]920Y
103€13]920Y
83U H 90T

1GbE

38U IH 90T

>|!
nll
ol
|1
o :
-
|
-
o |!
=|§
Lt

The converged architecture -
significantly reduces the cost of the
full system

40 HLT2 servers 40 HLT2 §ewers 40 HLT2 servers 40 HLT2 servers

Up to 100 HLT2 sub-farms (4000 servers) ‘
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CMS reconstruction on GPUs

Several algorithms ported to GPUs for Run 3:

*  Trackreconstruction in pixel detector
*  Primary vertex reconstruction from those tracks

. Calorimeter local reconstruction of ECal and HCal

Crucial to allow close interlinking of CPU and GPU
software

> integrated into CMSSW (arXiv2004.04334)

Work ongoing for other reconstruction algorithms

Front. Big Data 3 (2020) 601728

raw data |

‘ pixel tracks
(SoA)

pixél tracks |
‘ (legacy)

‘ pixel vertices|

(SoA)

‘pixel vertices

(legacy)

CRU
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‘ raw data ‘
)
‘ digis ‘

)

‘ clusters i

b
‘ doublets ‘
)

‘ ntuplets ‘
)
i pixel tracks }
)

}pixel verticesi

GPU

CMS )

# 40 MHz readout

L1 Trigger
FPGAs and Custom Electronics

¢ 100 kHz

( event readout J DAd

Y

( event building )

Y

event filtering =
[CMSSW: x86 CPU + GPU]
J
¢ O(kHz)
Tier-0 )

CERN EP software seminar
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https://arxiv.org/abs/2004.04334
https://www.frontiersin.org/articles/10.3389/fdata.2020.601728/full
https://indico.cern.ch/event/927838/

CMS HLT performance with GPUs

Average time per event on CPU Average time per event on GPU

Event-by-event comparison between CPU
and GPU results

Double precision on CPU, single precision
on GPU

ACAT poster by M. Huwiler

D. vom Bruch

* GPU offload increases HLT throughput by

factor 1.7

* 400 Nvidia Tesla T4 cards in HLT farm

CMS Preliminary 13.6 TeV

2,
-

3

Number of matched pairs
<

1 1 1 L
-0.04-0.03-0.02-0.01 0 0.01 0.02 0.03 0.04
A 1 between matched tracks

Difference in n of a track reconstructed on CPU
with the track reconstructed on GPU, matched
within a geometrical acceptance of AR < 0.2

ECAL
CMS Preliminary 13.6 TeV

107

10°

10°

10*

10°

10?2

10

1

~100 80 —60 40 -20 0 20 40 60 80 100

ECAL amplitude difference (GPU-CPU) [ADC counts]

ECAL barrel: difference of
amplitude of same pulse when the
fitis run on GPU and on CPU
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https://indico.cern.ch/event/1106990/contributions/5096916/attachments/2533713/4360082/HLT_GPU_Poster_MH_final.pdf

Common characteristics of software frameworks

* Same code base compiled for various computing architectures: GPUs, x86,...
* Memory management system for GPU memory: avoid dynamic memory allocation
* Schedule pipelines of GPU (and CPU) algorithms > hide memory copies

* Integration into experiments’ main software frameworks

<2

Allen framework at LHCb Patatrack at CMS 02 at ALICE

D. vom Bruch
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https://gitlab.cern.ch/lhcb/Allen
https://github.com/cms-patatrack
https://github.com/AliceO2Group/AliceO2

Challenge Il: Simulation

Running experiments at higher luminosity leads to large increase in simulation demands

Projected between 45 and 90 % of CPU usage for simulation
Large effort ongoing to process simulation on GPUs

Partially driven by hardware available in HPC centers

Projected needs for Run 3

T

T
LHCb Preliminary

=
?
I
@
g
B
=

N MC:100% Detailed Simulation
- —— Pledge
WLCG

CPU [kHS06]
I
S

ALICE

HLT
Opportunistic
Baseline

= ATLAS Preliminary
~= Aggressive Fast Simulation Model

2020 Computing Model -CPU: 2030: Baseline

7% 15%

Analysis
30%

Year

See H. Gray's opening vCHEP talk

D. vom Bruch

CMS Public
Total CPU HL-LHC fractions
ates

2020 estim.

Other: 1%

GenSim: 5%
RECO: 60%
DIGI: 5%
‘ Analysis: 3%

‘ reMINIAOD: 5%

RECOSim: 22%

MC-Full(Rec)
MC-Fast(Sim)
MC-Fast(Rec)
EvGen

Heavy lons
Data Deriv
MC Deriv
Analysis
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https://indico.cern.ch/event/948465/contributions/4348790/attachments/2245532/3808347/HeatherCHEP5.pdf

Simulation: Where to use accelerators?

Lockstep? MC generators (iucky)) vs MC detector simulation (unlucky)

LA ROULETTE DE MONTE-CARLO

* Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw a@ﬁ*‘i‘?’j@% =
TS
S

a-
=

* From a software workflow point of view, these are used in two rather different cases:

MC DECISIONS [@

Detector simulation (Geant4)

- Particle/matter interaction
(when? how?)

- Particle decays (when?)

—|  Data parallelism (NB: MULTI-EVENT API !)
MC SAMPLING

INPUT Q@

ME event generators*
(before ME calculation):
- MC integration
(cross sections)
- MC generation
(event samples)

SAME CALCULATION
ON DIFFERENT DATA!

Event generators*
Lockstep processing Stochastic branching (after ME calculation):
Good for SIMT/SIMD Bad for SIMT/SIMD | _ MC unweighting (keep/reject
*NB: the CPU-intensive ME calculation comes Parton shovyers (PS)
before PS, fragmentation, detector simulation - Fragmentation and decays
Q‘f_)\ A. Valassi — Data parallelism in Madgraph5_aMC@NLO: vectorization and GPUs Compute Accelerator Forum — CERN, 8 February 2023 14
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Event generators on GPUs

Madgraph4gpu project: started in 2020 within HSF Generator WG
Port MC event generators, in particular matrix element calculation (current bottleneck), to GPUs

Make use of CUDA’s random number generator: cuRAND

Main design idea: event-level data parallelism (lockstep)

« In MC generators, all events in one channel initially go through the same calculations

Executive-summary-for-the-impatient Conclusions!
— Computing MEs involves the calculation of the exact same function on different data points

— This is what makes event generators a good fit for GPUs (SIMT) and vector CPUs (SIMD) + The Matrix Element calculation in any ME generator can be efficiently parallelized using SIMD or GPUs

PSEUDO RANDOM

+ Our reengineering of MG5aMC is close to a first fully functional alpha release for LO QCD processes
— The new ME calculation is integrated in MadEvent — we get the same cross section and LHE files as in Fortran!

Time NUMBERS * On CPUs, in vectorized C++ we reach the maximum x8/x16 (double/float) SIMD speedup for MEs alone
l]ﬂﬂ{ﬂ I —The speedups achieved for the overall workflow are slightly lower due to Amdahl’s law, but not much
d_ - PHASE SPACE —Example: our current overall speedup is x6/x10 (double/float) for gg—ttgg (on one CPU core)
no divergence SAMPLING

» On GPUs, using CUDA we achieve O(100-1000) speedups for MEs alone over one no-SIMD CPU core
—The speedups may be much lower due to Amdahl's law, but we are improving on that
—Example: our current overall speedup is x60/x100 (double/float) for gg—ttggg on an NVidia V100

Lottt oot
W s .

SIMT C——
e cpu L]

* Floats are x2 faster than doubles in SIMD and NVidia GPUs — we also added ‘mixed’ precision modes

SIMD
* In SYCL we get ~similar performances to CUDA on NVidia and we may run also on AMD or Intel GPUs
y
GPU SIMT (Single Instruction Multiple Threads) CPU SIMD (Single Instruction Multiple Data)
Lockstep: all threads in a warp follow the same branch Lockstep: same op for all data in a vector register . P § i
Minimum parallelism: 32 threads in a warp (NVidia) | | Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...) * Future challenges include optimizing heterogenous processing on one GPU and multiple CPU cores

A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector GPUs VeI = Ty 202 “{ L‘/’ A. Valassi — Data parallelism in Madgraph5_aMC@NLO: vectorization and GPUs Compute Accelerator Forum — CERN, 8 February 2023 51

Compute Accelerator Forum 02/2023 A. Vallassi
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https://indico.cern.ch/event/948465/contributions/4323568/attachments/2246733/3812013/20210519-MGonGPU-vCHEP-AV-010.pdf
https://indico.cern.ch/event/1207838/contributions/5079935/attachments/2590235/4469588/20230208-MG5aMConGPU-CAF-AV-v004.pdf

Photon simulation with Nvidia OptiX

Photon simulation is similar to ray tracing problem
- ideally suited workload for GPU

Opticks framework developed for photon simulation, e.g. in a LAr
TPC

Uses Nvidia's OptiX ray tracing engine and integrated with Geant4

JUNO : Liquid Scintillator, 18k 20-inch PMTs, 25k 3-inch PMTs

Top Tracker

Central Detector
Acrylic Sphere
Stainless Steel Latticed S

- PMT

18,000 20-inch PMTs
25,000 3-inch PMTs
78% Coverage

Liquid Scintillator
20 kton

Water Cherenkov
35 kton pure water

2,000 20-inch veto PMTs
2/19

See S. Blyth's vCHEP talk

D. vom Bruch

Ray tracing

Image source

Also IceCube are working on using ray tracing for
their photon simulation, see this vVCHEP talk
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http://x-special/nautilus-clipboard%0Acopy%0Afile:///home/vombruch/Documents/tCSC2021/lectures/figures/Illustration-of-basic-ray-tracing.png
https://indico.cern.ch/event/948465/contributions/4324115/attachments/2245809/3808580/opticks_vchep_2021_may19_v2c.pdf
https://indico.cern.ch/event/948465/contributions/4323684/attachments/2246455/3809934/IceCube_CUDA_CHEP21.pdf

Machine learning: Training

Input layer Output layer

A simple neural network

X
W, oW, Wy W ; 7 wix, + W, X, +wax, +wx, +b
X. . ’
2
. + = X +wx, +wx, +w,x, +
? X+ WX +WiXs +wx, +

* Large amount of data to handle: high memory bandwidth on GPUs

* Neural networks are embarassingly parallel problems: matrix multiplication
* Many networks can be trained with reduced precision

* Applications in HEP: Pattern recognition, categorization, fast simulation, ...
* Libraries used: Tensorflow, Keras, PyTorch, ...

e HSF tutorial on machine learning with GPUs

D. vom Bruch

activation
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https://hsf-training.github.io/hsf-training-ml-gpu-webpage/aio/index.html

Summary

* We are facing a huge computing challenge in HEP, mainly in real-time reconstruction and simulation

* Cannot be solved solely by using CPU processors

* Trend in HPC is towards heterogeneous architectures

* Heterogeneous architectures are crucial for energy efficient systems

* Make use of many-core accelerators for embarrassingly parallel problems within HEP

* Most popular accelerator: GPUs

* Various experiments have developed and commissioned heterogeneous real-time analysis systems with GPUs
* Extensive R&D also ongoing to use them for simulation

* Frameworks for heterogeneous software are being developed

* Note: Compute Accelerator Forum organized by HEP Software Foundation, Openlab, SIDIS

Presentations roughly once per month on accelerator topics

D. vom Bruch
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https://indico.cern.ch/category/12741/
https://hepsoftwarefoundation.org/
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Types of GPUs

Scientific GPUs

Gaming GPUs

Precision

~3 times more single precision TFLOPS than
double precision

> suited for double precision

~40 times more single precision
TFLOPS than double precision

> not well suited for double
precision

Error correction

Available

Not available

Connection

NVLink & PCle

D. vom Bruch

Only PCle
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R&D to use Graphcore's IPUs

Convolutional - DijetGAN

102_

Simulation

* Study usage of IPUs for event generation with fast simulation
technique

* Particularly suited for machine learning techniques

Speed Up (training)

* Tested event generation with generative networks (GAN)

IPU/GPU

IPU/CPU

Track reconstruction Fully Gommected ST prompt
* Also implemented Kalman filter for track fitting on the IPU -
* Multiple Instruction Multiple Data (MIMD) architecture

* - Higher performance observed for conditional control-flow
programs

* No direct comparison to GPU implementation

101_

Speed Up (training)

10° 4

1071_

IPU/CPU IPU/GPU

Computing and Software for Big Science 5, 8 (2021)
Fig.3 Comparison of the time to train the IPU relative to the CPU or
GPU of Table 1
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https://link.springer.com/article/10.1007/s41781-021-00057-z

ALICE: Reconstruction on GPUs

Process 10 ms timeframes, O(10 GB) size

One detector dominates computing needs: Time Projection Chamber (TPC)

TPC reconstructed in real time on GPUs for compression and calibration since Run 1
Also adding reconstruction of other detectors to the GPU workflow

Aiming to process full barrel reconstruction on GPUs

New facility for data processing and compression — 1500 CPU/GPU nodes, 60 PB storage

TPC Cluster

. TPC <10MeV/c removal
part of baseline identification

scenario

TPC Track Model TPC Entropy
TPC Distortion Correction Compression Compression

TPC Cluster TPC Track . TPC Track . TPC TRD l—“

<
Finding Finding Merging Track Fit Tracking
Vertexing Finding Track Fit

GPU API Framework m Material Lookup

@ In operation
@ Nearly ready

@ Being studied Common GPU
@B Development not started Components:

See D. Rohr's vCHEP talk D. vom Bruch


https://indico.cern.ch/event/948465/contributions/4324179/

ALICE TPC reconstruction on GPUs

* Runseveral events in parallel
* The event size is large, so not too many events fit into GPU memory at once

* Process the sectors of the TPC in parallel
* Same code base for CPU and GPU code

- can run on either architectt

ﬁ] Kernels for one TPC sector

| ¢bmmand Queue 1
§ CBmmand Queue 2

> clhmand Queue 3
I Command Queue 4

# Phase Task Method Locality Time Device

1 1 Seeding Cellular Automaton  Very local 30% CPU & GPU

2 Track following Simple Kalman filter Sector-local 60% CPU & GPU

3 1II Track Merging  Matching Covariance Global 2% CPU

4 Final Fit Kalman filter Global 8% CPU (or GPU)

arxiv 1712.09430
D. vom Bruch 53


https://arxiv.org/abs/1712.09430

GPU power efficiency

Theoretical peak FLOPs per Watt, single precision

107
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i j j | . .
2008 2010 2012 2014 2016 2018

End of Year
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Mu3e experiment

Fixed target experiment at the Paul Scherrer Institute in Switzerland

Study lepton flavor violating decay p* — e*e-e*

Triggerless readout @ 10 GB/s, reduce to 100 MB/s with GPU filter farm

Process 50 ns time slices of data

Linear track fit for low-momentum particles for real-time data selection implemented on GPUs
Measured 2-10° time slices / s on one Nvidia GTX 1080

> Can do full event selection with 12 GPUs FPGA_ oy

Data from all detectors

Hits in pixel detector Hits in pixel detector

Planned to start data-taking in 2023

Selection decision CPU Selection decision

+

main Selected events
Selected events memory

EPJ Web of conferences, 2017

= .
Mu3e Technical Design Report: arXiv2009:11690 B time
Storage
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https://www.epj-conferences.org/articles/epjconf/abs/2017/19/epjconf_ctdw2017_00013/epjconf_ctdw2017_00013.html
https://arxiv.org/abs/2009.11690

GPU power efficiency

Theoretical peak FLOPs per Watt, single precision
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