Scientific Computing on Heterogeneous Architectures

Dorothea vom Bruch

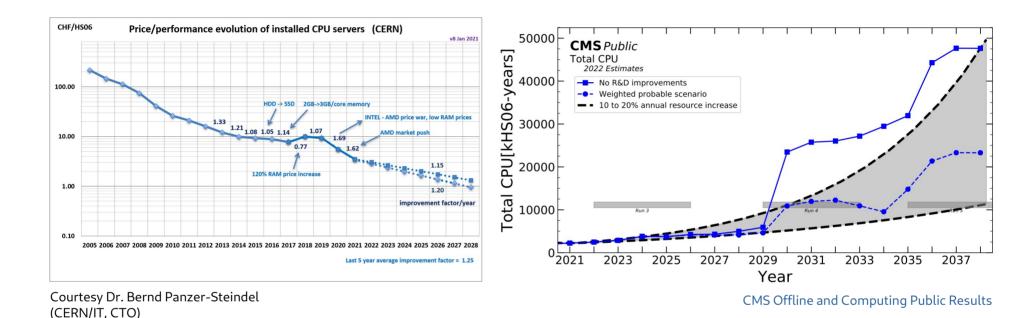
Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France Email: dorothea.vom.bruch@cern.ch

Thematic CERN School of Computing
June 2023
Split, Croatia

Outline

- Heterogeneous computing
- Trade-offs between multi-core and many-core architectures
- From general to specialized: Hardware accelerators and applications
- Type of workloads ideal for different accelerators
- Implications of heterogeneous hardware on the design and architecture of scientific software
- Embarrassingly parallel scientific applications in High Energy Physics
 - Processed on Graphics Processing Units (GPUs)

Computing performance challenge @ CERN



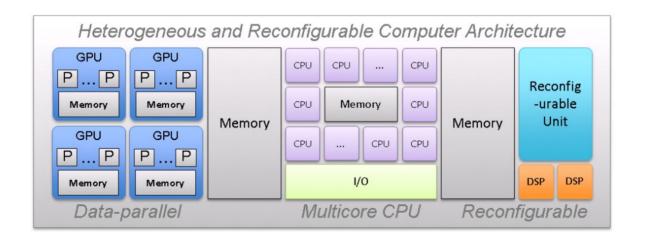
- In high energy physics, usually assume flat budget for computing cost estimation
- Can no longer count on a stable increase of CPU processor performance / dollar
- Energy efficiency increasingly important
- Need to exploit heterogeneous systems in scientific applications following High Performance Computing (HPC)

What does "heterogeneous" mean?

- System uses multiple types of computing cores or processors based on different computer architectures
 - Central Processing Units (CPUs)
 - Graphics Processing Units (GPUs)
 - Application-Specific Integrated Circuits (ASICs)
 - Field Programmable Gate Arrays (FPGAs)
 - Neural Processing Units (NPUs)
 - Tensor Processing Units (TPUs)
- Processors are designed for specific purposes or specialized processing
 - → Assign workloads according to matching characteristics
- Optimize performance and energy efficiency
- "Accelerators" and "co-processors" both describe processors providing computing power in addition to a general-purpose processors (typically a CPU)

Heterogeneous computing

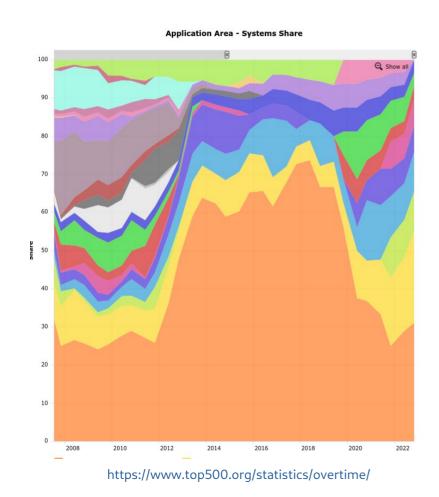
- Part of our everyday life: (de)compression, encryption, video stream decoding, 3D graphics acceleration, pattern / object recognition, automatic vehicles
- Accelerator technology often scaled to become a discrete device
 - Plug-and-play several components into a heterogeneous architecture



Trend towards heterogeneous solutions: TOP500

			Rmax	Rpeak	Power
ľ	ık System	Cores	(PFlop/s)	(PFlop/s)	(kW)
	Frontier - HPE Cray EXZ35a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	8,730,112	1,102.00	1,685.65	21,100
	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.26Hz, Totu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	428.70	6,016
	Leonardo - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 BB, Quad-rait NVIDIA HDR100 Infiniband, Atos EuroHPC/CINECA Italy	1,463,616	174.70	255.75	5,610
	Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA Votta GV100, Dual-rail Mellanox EDR Infiniband, IBM DOE/Sc/OAR Ridge National Laboratory United States	2,414,592	148.60	200.79	10,096
	Sierra - IBM Power System AC922, IBM POWER9 22C 3.16Hz, NVIDIA Votta 6V100, Dual-rait Mellanox EDR Infiniband, IBM / NVIDIA / Mellanox DDE/NNSA/LLNL United States	1,572,480	94.64	125.71	7,438
	Sunway TalhuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway, NRCPC National Supercomputing Center in Wuxi China	10,649,600	93.01	125.44	15,371
	Pertmutter - HPE Cray EX235n, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10, HPE DOE/SC/LBNL/NERSC United States	761,856	70.87	93.75	2,589
	Setene - NVIDIA DGX A100, AMD EPYC 7742 64C 2.25GHz, NVIDIA A100, Mellanox HDR Infiniband, Nvidia NVIDIA Corporation United States	555,520	63.46	79.22	2,646
10	Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH Express-2, Matrix-2000, NUDT National Super Computer Center in Guangzhou	4,981,760	61.44	100.68	18,482

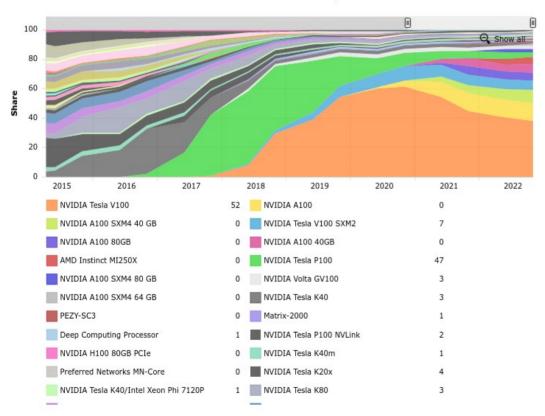
Application areas of TOP500 data centers



- Share of data centers (not performance)
- Largest fraction is "Research"
- Last years increase in "Automotive", "Information Service", "Energy" and "IT Services"

Accelerators in TOP500 data centers

Accelerator/Co-Processor - Systems Share



- Mainly Nvidia GPUs
- Some systems with AMD GPUs (increasing in last years)
- Some with processors dedicated to deep learning applications

Heterogeneous solutions & sustainability: Green500

	TOP500			Rmax	Power	Energy Efficiency
Rank	Rank	System	Cores	(PFlop/s)	(kW)	(GFlops/watts)
1	405	Henri - Lenovo ThinkSystem SR670 V2, Intel Xeon Platinum 8362 2800Mhz (320), NVIDIA H100 80GB PCIe, Infiniband HDR, Lenovo Flatiron Institute United States	5,920	2.04	31	65.091
2	32	Frontier TDS - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DDE/SC/Oak Ridge National Laboratory United States	120,832	19.20	309	62.684
3	11	Adastra - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 26Hz, AMD Instinct MI250X, Stingshot-11, HPE Grand Equipement National de Calcul Intensif - Centre Informatique National de l'Enseignement Suprieur (GENCI-	319,072	46.10	921	58.021
4	15	Setonix – OPU - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 26Hz, AMD Instinct MI250X, Slingshot-11, HPE Pawsey Supercomputing Centre, Kensington, Western Australia Australia	181,248	27.16	477	56.983
5	68	Dardet GPU - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Stingshot-11, HPE KTH - Royal Institute of Technology Sweden	52,864	8.26	146	56.491

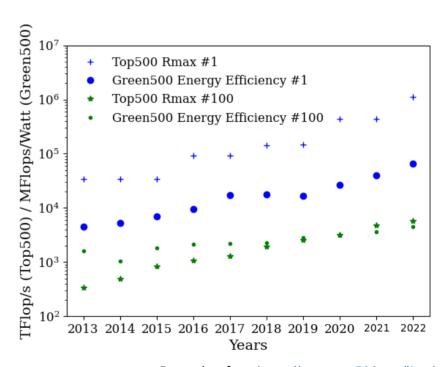
		oweden				
6	1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE D0E/SC/Oak Ridge National Laboratory United States	8,730,112	1,102.00	21,100	52.227
7	3	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 26Hz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,220,288	309.10	6,016	51.382
8	159	ATOS THX.A.B - BullSequana XH2000, Xeon Platinum 8358 32C 2.6GHz, NVIDIA A100 SXM4 64 GB, Quad-rail NVIDIA HDR100 Infiniband, Atos Atos France	25,056	3.50	86	41.411
9	359	MN-3 - MN-Core Server, Xeon Platinum 8260M 24C 2.4GHz, Preferred Networks MN-Core DirectConnect, Preferred Networks Preferred Networks Japan	1,664	2.18	53	40.901
10	331	Champollion - Apollo 6500, AMD EPYC 7763 64C 2.45GHz, NVIDIA A100 SXM4 80 GB, Mellanox HDR Infiniband, HPE Hewlett Packard Enterprise France	19,840	2.32	60	38.555

- All top 10 systems from the Green500 list use accelerators
- 9/10 are accelerated with Nvidia or AMD GPUs
- MN-3 uses an accelerator optimized for matrix arithmetic, targeting deep learning applications

https://www.top500.org/lists/green500/2022/11/

Energy efficiency

- Energy efficiency increasinly important
 - Electricity prices
 - Environmental impact
- Powering processors often costs more than buying them
- Definition of power consumption not uniform:
 - Only power delivered to machine
 - Power for machine, cooling and monitoring systems
 - Average versus peak power consumption
- Energy efficiency alone can hide increased absolute power demands → also consider absolute power
- Energy efficiency has increased less than processing power over last decade



Data taken from https://www.top500.org/lists/ Rmax: Maximal LINPACK performance achieved

Types of hardware accelerators used in HEP

General purpose processors

Graphics Processing Units (GPUs) Vendors: AMD, Nvidia, Intel

Field Programmable Gate Arrays (FPGAs)

Vendors: Xilinx, Altera

Dedicated accelerators

Tensor Processing Units (TPUs)

Vendor: Google Specialized for machine learning

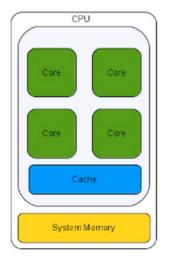
Intelligent Processing Units (IPUs)

Vendor: Graphcore Specialized for machine learning

Multi-core versus many-core architecture

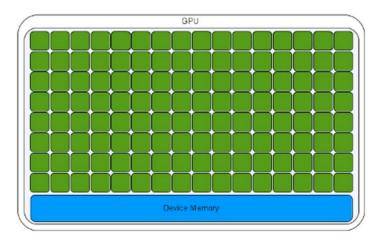
Multi-core

- O(10) cores
- Flexible: designed for both serial and parallel code
- Larger caches
- Emphasis on single thread performance



Many-core

- O(100-1000) cores
- Designed for parallel code
- Small caches
- Simpler cores

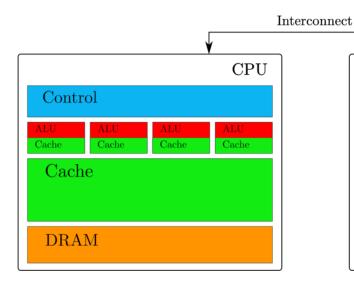


Types of workload for multi/many core architectures

- Typically, the main processor is multi-core and paired with a many-core accelerator
- Ensures that both serial and parallel code can be run efficiently
- Multi-core processors are often CPUs
 - Legacy code can run on them (albeit with low performance if not optimized for multi-threading)
 - They provide good serial performance
- Many-core processors are typically specialized accelerators
 - Individual algorithms / chains of algorithms are developed specifically for the accelerator
 - Only highly parallelizable problems are efficiently processed by them
 - The most widely used accelerators in science are many-core architectures

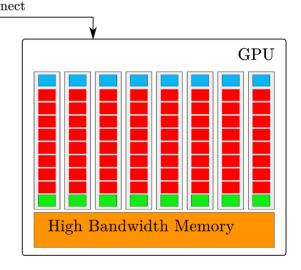
GPUs

- Developed for graphics pipeline
- General purpose computations possible
- Increasingly used for AI applications
- Hardware specialized in this direction since few years
- Programmed with high-level language



Low core count / powerful ALU
Complex control unit
Large chaches

→ Latency optimized



High core count
No complex control unit
Small chaches

→ Throughput optimized

GPU vs. CPU: Specifications

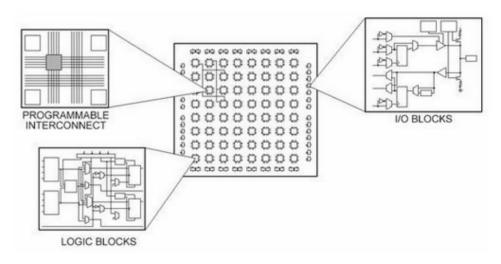
	AMD Ryzen Threadripper 39	90X	Nvidia A100		
Core count	64 cores / 128 threads		6912 cores		
Frequency	2.9 GHz		1.41 GHz		
Peak Compute Performance	3.7 TFLOPs		19.5 TFLOPs (single precision)		
Memory bandwidth	Max. 95 GB/s		1.6 TB/s		
Memory capacity	Max O(1) TB		40/80 GB		
Technology	7 nm	1	7 nm		
Die size	717 mm ²		826 mm²		
Transistor count	3.8 billion		54.2 billion		
Model	Minimize latency		Hide latency through parallelism		

Connectivity with GPU: PCIe connection

PCle generation	1 lane	16 lanes	Year of announcement
2.0	500 MB/s	8 GB/s	2007
3.0	985 MB/s	15.75 GB/s	2010
4.0	1.97 GB/s	31.5 GB/s	2011
5.0	3.94 GB/s	63 GB/s	2017
6.0	7.56 GB/s	121 GB/s	2019
7.0	15.13 GB/s	242 GB/s	2022

FPGAs

- Thousands of logic blocks
- Input/Output blocks
- Connected via programmable interconnect
- Configure a circuit to do the task it is programmed for
 → Hardware implementation of an algorithm
- Fixed latency
- Very good at integer computations
- Does not require a computer to run (has its own I/O)
- Traditionally, programmed with hardware description languages (Verilog, VHDL) → long development time
- Increasingly more high-level languages developed



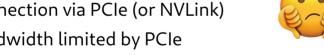
Source: National Instruments

xkcd

GPU vs. FPGA

GPUs

- Higher latency
- Connection via PCIe (or NVLink)
- Bandwidth limited by PCIe



- Very good floating point operation performance
- Lower engineering cost
- Backward / forward compatibility

FPGAs

- Low & deterministic latency
- Connectivity to any data source
- High bandwidth

- Intermediate floating point performance
- High engineering cost
- Not so easy backward compatibility

CPU – GPU - FPGA

	Latency	Connection	Engineering cost	FP performance	Serial / parallel	Memory	Backward compatibility
CPU	Ο(10) μs	Ethernet, USB, PCIe	Low entry level: Programmable with C++, pthon, etc.	O(1-10) TFLOPs	Optimized for serial, increasingly vector processing	O(100) GB RAM	Compatible, except for vector instruction sets
GPU	O(100) μs	PCIe, Nvlink	Low to medium entry level: Programmable with CUDA, OpenCL, etc.	O(10) TFLOPs	Optimized for parallel performance	O(10) GB	Compatible, exept for specific features
FPGA	Fixed O(100) ns	Any connection via PCB	High entry level: traditionally hardware description languages, Some high-level syntax available	Optimized for fixed point performance	Optimized for parallel performance	O(10) MB on the FPGA itself	Not easily backward compatible

Types of workloads for different accelerators

GPUs:

- Relaxed latency requirements
- High FLOPs need
- I/O via PCIe no bottleneck
- Highly parallelizable problem
- Fits within GPU memory

FPGAs:

- Strict latency requirements
- High I/O needs
- Highly parallelizable problem
- Fits within FPGA resources (logic elements and memory blocks)

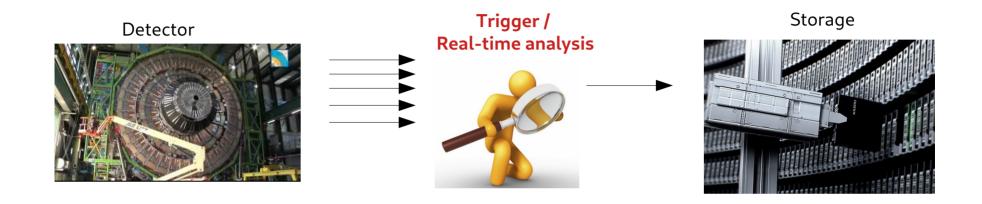
TPUs / IPUs etc.:

- Machine learning training or inference
- TPUs: Use as a service in the cloud
- IPUs: MIMD compatible problem
- Fit within memory

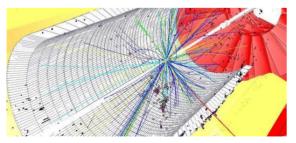
Challenges in heterogeneous computing

	Challenge	Approach		
Different architectures	Different instruction sets can produce results that are not bit-wise reproducible	Check requirements of problem at hand: What is the minimum required resolution?		
Data transmission between devices	 Interconnect can cause bandwidth bottleneck Data layout: one might not be suitable for all device architectures and memory structures 	 Minimize copies between devices Minimize transformations between data layouts 		
Programming environments	Different compilersDifferent APIs	 Use programming environments designed for heterogeneous computing → lecture by D. Campora 		

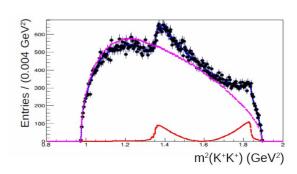
Computing needs in HEP



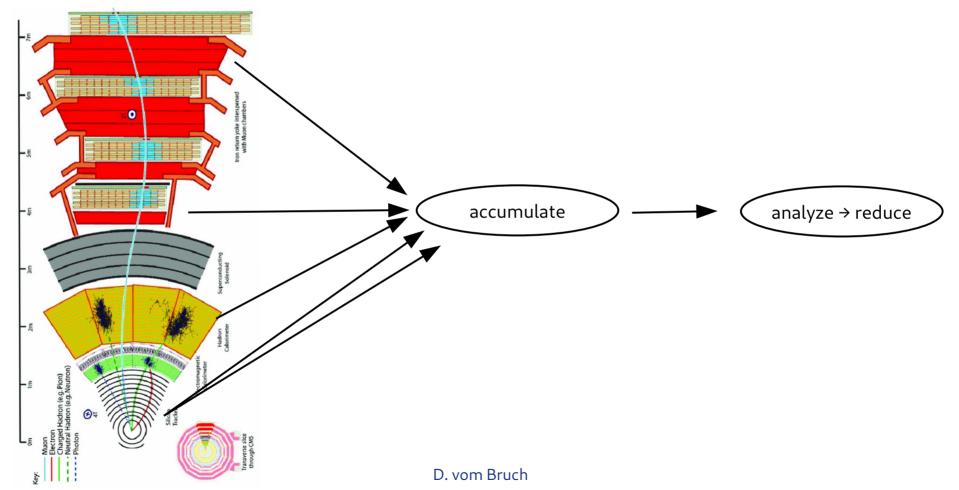
Simulation



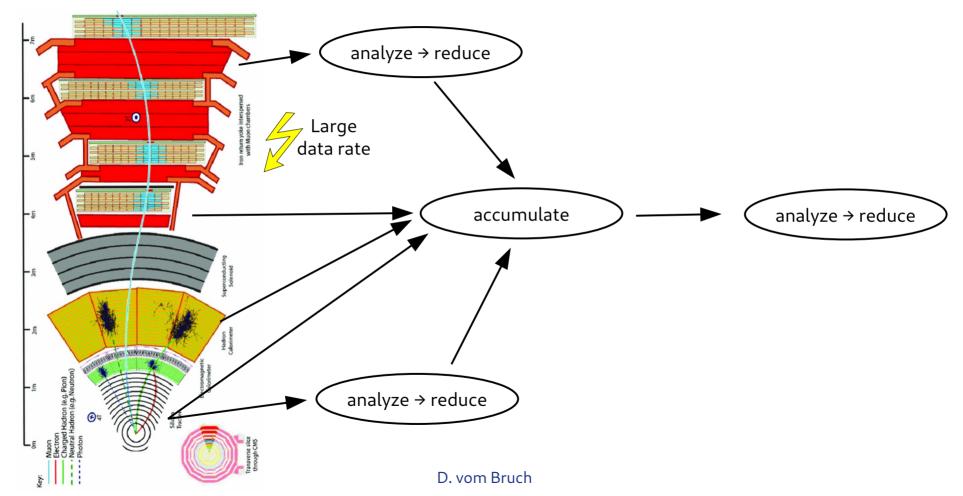
Data analysis



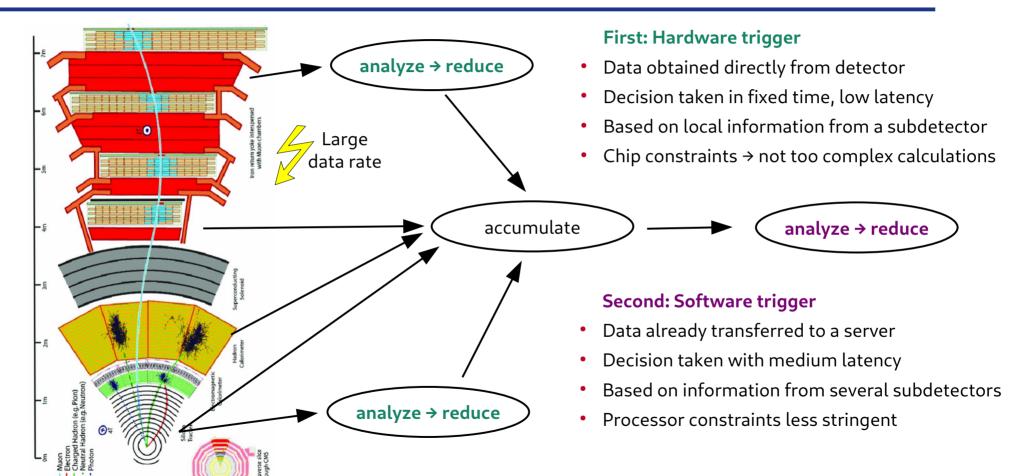
"Trigger": Real-time data analysis and reduction



"Trigger": Real-time data analysis and reduction



"Trigger": Real-time data analysis and reduction



Match trigger to hardware

First: Hardware trigger

- Data obtained directly from detector
- Decision taken in fixed time, low latency
- Based on local information from a subdetector
- Chip constraints → not too complex calculations

Field Programmable Gate Arrays (FPGAs)

- Low & deterministic latency
- Connectivity to any data source → high bandwidth
- Intermediate floating point performance

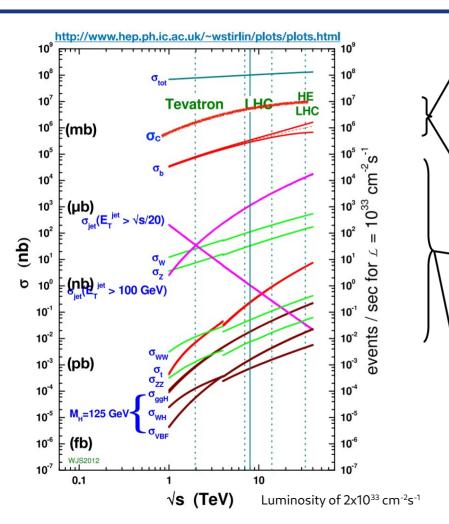
Second: Software trigger

- Data already transferred to a server
- Decision taken with medium latency
- Based on information from several subdetectors.
- Processor constraints less stringent

CPUs and GPUs

- Higher latency
- Very good floating point performance
- Connected to server (via PCIe connection for GPU)

Efficient signal selection

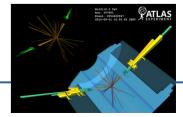


LHCb: Mainly beauty and charm physics

- Signal rates at MHz level
- Signal characteristics: Displaced vertices, momentum, particle type
- → No optimal local criteria for selection

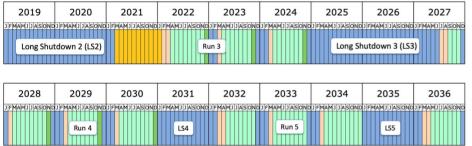
ATLAS & CMS: Mainly Higgs properties, high $p_{\scriptscriptstyle T}$ new phenomena

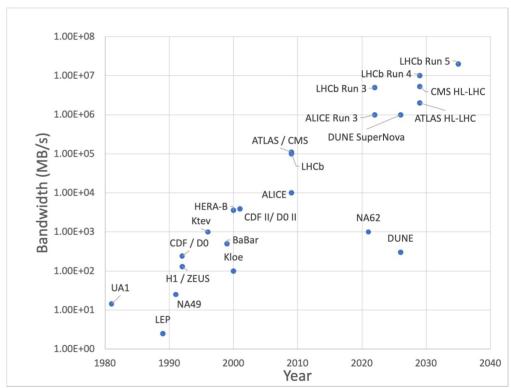
- Signal rates up to hundreds of kHz
- Signal characteristics: high pT / transverse energy
- → Local criteria for selection possible



Challenge I: Real-time analysis (RTA)

LHC long-term schedule





A. Cerri – University of Sussex

28

Overview of GPU usage in various HEP experiments

Experiment	Main tasks processed on GPU	Event / data rate	Number of GPUs	Deployment date
CMS	Decoding, clustering, pattern recognition in pixel detector	100 kHz	O(400)	2022
ALICE	Track reconstruction in three sub-detectors	50 kHz Pb-Pb or < 5 MHz p-p / 30 Tbit/s	O(2000)	2022
LHCb	Decoding, clustering, track reconstruction in three sub-detectors, vertex reconstruction, muon ID, selections	30 MHz/ 40 Tbit/s	O(250)	2022

Overview of GPU usage in various HEP experiments

Experiment	Main tasks processed on GPU	Event / data rate	Number of GPUs	Deployment date
CMS	Decoding,	100 kHz	O(400)	2022

All experiment needs and environments are quite different

→ heterogeneous solutions are different

Common points

- Reconstruction algorithms are main candidates for parallelization and off-loading to accelerators
- · Scheduling of memory copies, calculations on accelerator, calculations on host server is crucial
- Flexible software frameworks are necessary

vertex
reconstruction,
muon ID, selections

Recurrent tasks in real-time data analysis

Raw data decoding

• Transform binary payload from subdetector raw banks into collections of hits (x,y,z) in LHCb coordinate system

Track reconstruction

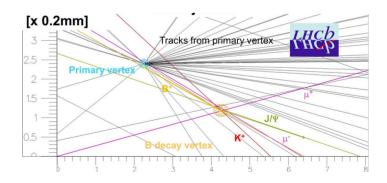
- Consists of two steps:
 - Pattern recognition: Which hits were produced by the same particle? → "Track"
 - → Huge combinatorics when testing different combinations of hits
 - Track fitting: Describe track with mathematical model

Vertex finding

- Where did proton-proton collisions take place?
- Where did particles decay within the detector volume?

Calorimeter / muon detector reconstruction

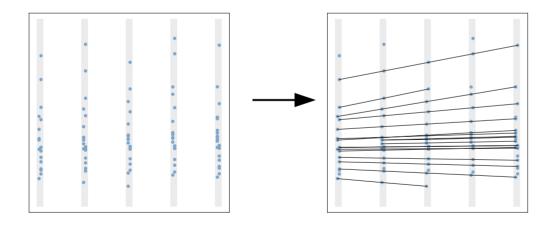
- Reconstruct clusters in the calorimeter / muon detectors
- Match tracks to clusters



Computational challenge: Track reconstruction

Pattern recognition

- Which measurements originate from the same particle?
 → "Track"
- Huge combinatorics when testing different combinations of measurements



Track fit

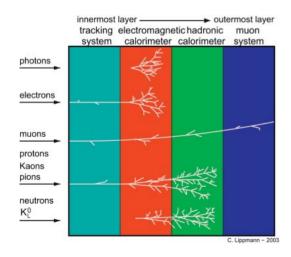
- Describe track with mathematical model
- Calculate where it came from and how it continues

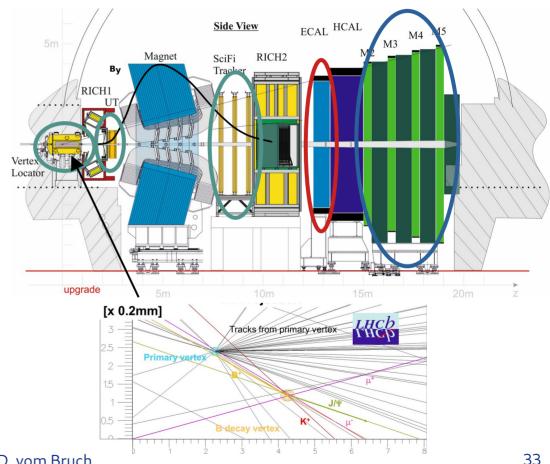
Huge computing challenge for 10⁹ – 10¹⁰ tracks / second

LHCb's first level real-time analysis

High Level Trigger 1 (HLT1) tasks

- Decode binary payload of sub-detectors
- Reconstruct charged particle trajectories
- Identify electron and muon particles
- Reconstruct particle decay vertices
- Select proton-proton bunch collisions to store





LHCb: How does HLT1 map to GPUs?

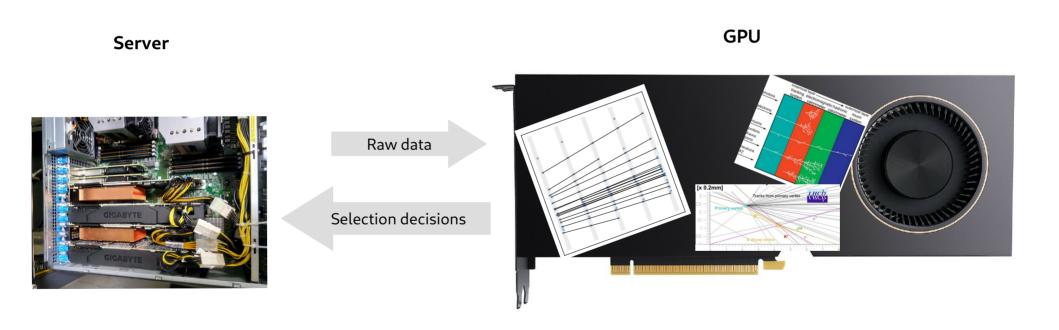
Characteristics of LHCb HLT1	Characteristics of GPUs
Intrinsically parallel problem: - Run events in parallel - Reconstruct tracks in parallel	Good for - Data-intensive parallelizable applications - High throughput applications
Huge compute load	Many TFLOPS
Full data stream from all detectors is read out → no stringent latency requirements	Higher latency than CPUs, not as predictable as FPGAs
Small raw event data (~100 kB)	Connection via PCIe → limited I/O bandwidth
Small event raw data (~100 kB)	Thousands of events fit into O(10) GB of memory

LHCb: The Allen project

- Named after Frances E. Allen
- Fully standalone software project: https://gitlab.cern.ch/lhcb/Allen, documentation
- Framework developed for processing LHCb's first real-time selection stage (HLT1) on GPUs

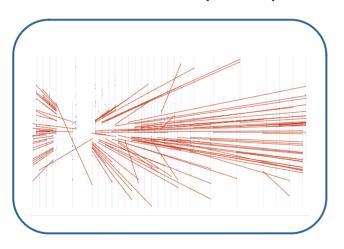
- Cross-architecture compatibility via macros & few coding guide lines
 - GPU code written in CUDA, runs on CPUs, Nvidia GPUs (CUDA), AMD GPUs (HIP)
- Algorithm sequences defined in python and generated at run-time
- Multi-event processing with dedicated scheduler
- Memory manager allocates large chunk of GPU memory at start-up
- Reconstruction algorithms re-designed for parallelism and low memory usage: O(MB) per core
- Publications: Comput Softw Big Sci 4, 7 (2020), Technical Design Report (2020), Comput Softw Big Sci 6, 1(2022), EPJ Web of Conferences 251, 04009 (2021)

LHCb: Minimize copies to / from GPU

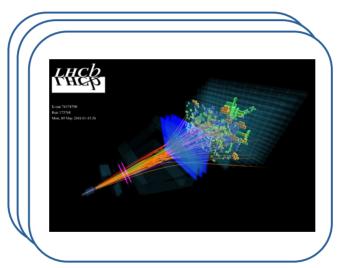


LHCb: Three levels of parallelization

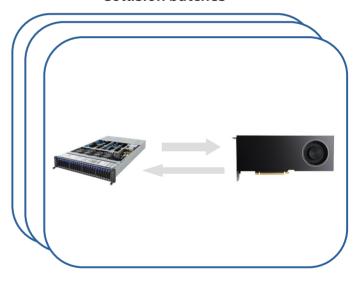
Intra-collision: Tracks, vertices, ...



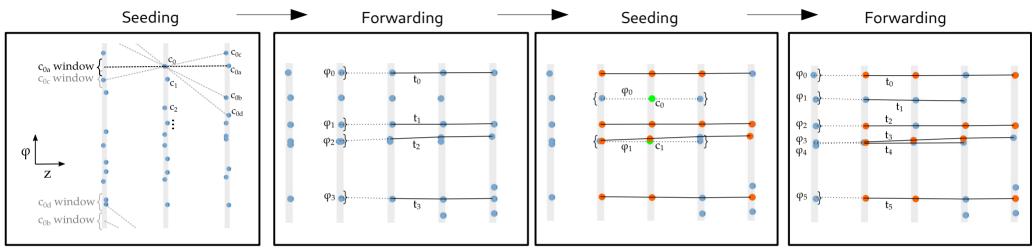
Proton collisions



Collision batches



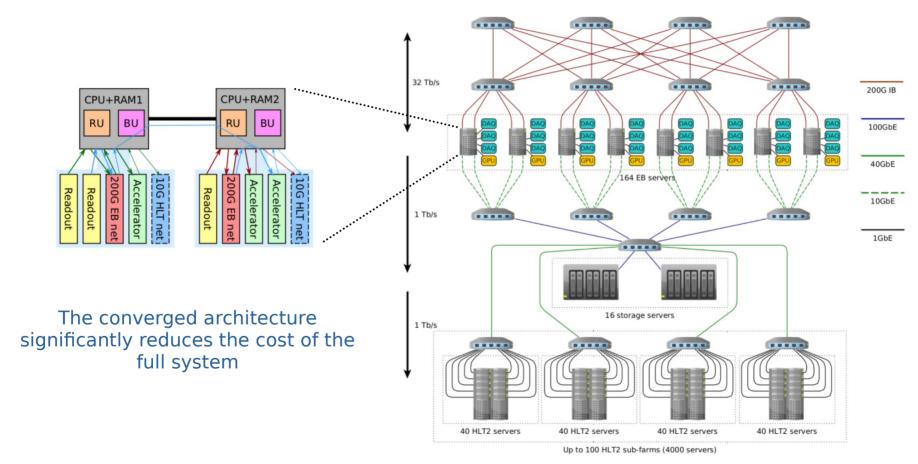
LHCb: Example algorithm: "Triplet" finder



D. Campora et al, "Search by triplet: An efficient local track reconstruction algorithm on parallel architectures", Journal of Computational Science 54, 101422 (2021)

- Build "triplets" of three hits on consecutive layers → parallelization
- Choose them based on alignment in phi
- Hits sorted by phi → memory accesses as contiguous as possible: data locality
- Extend triplets to next layer → parallelization

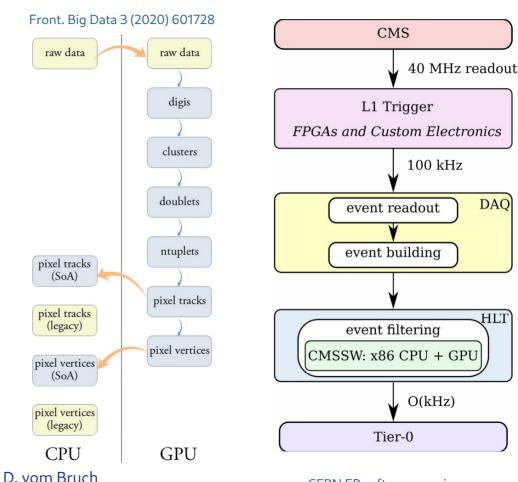
LHCb: GPU HLT1 within data acquisition system



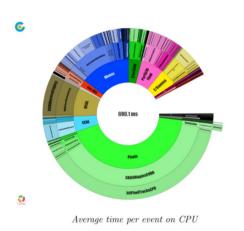
D. vom Bruch

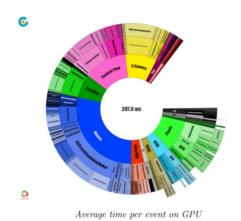
CMS reconstruction on GPUs

- Several algorithms ported to GPUs for Run 3:
 - Track reconstruction in pixel detector
 - Primary vertex reconstruction from those tracks
 - Calorimeter local reconstruction of ECal and HCal
- Crucial to allow close interlinking of CPU and GPU software
 - → integrated into CMSSW (arXiv2004.04334)
- Work ongoing for other reconstruction algorithms



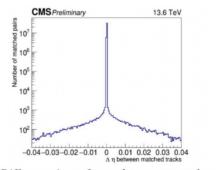
CMS HLT performance with GPUs





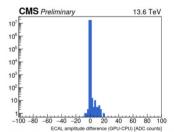
- GPU offload increases HLT throughput by factor 1.7
- 400 Nvidia Tesla T4 cards in HLT farm.

- Event-by-event comparison between CPU and GPU results
- Double precision on CPU, single precision on GPU



Difference in η of a track reconstructed on CPU with the track reconstructed on GPU, matched within a geometrical acceptance of $\Delta R < 0.2$

\mathbf{ECAL}



ECAL barrel: difference of amplitude of same pulse when the fit is run on GPU and on CPU

Common characteristics of software frameworks

- Same code base compiled for various computing architectures: GPUs, x86,...
- Memory management system for GPU memory: avoid dynamic memory allocation
- Schedule pipelines of GPU (and CPU) algorithms → hide memory copies
- Integration into experiments' main software frameworks

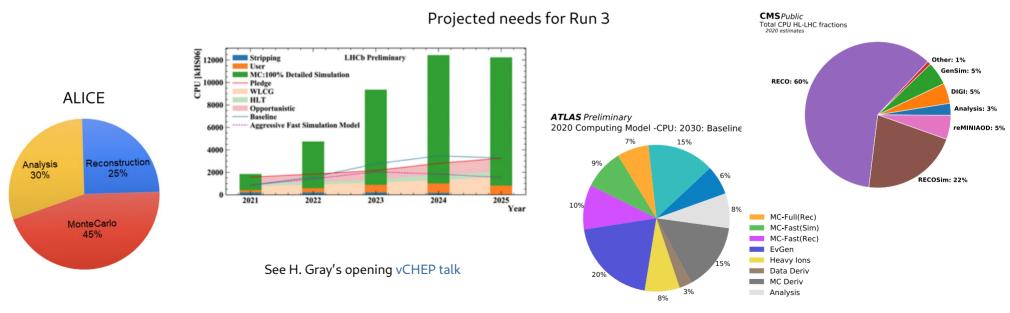
Allen framework at LHCb

Patatrack at CMS

O2 at ALICE

Challenge II: Simulation

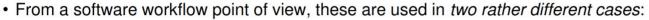
- Running experiments at higher luminosity leads to large increase in simulation demands
- Projected between 45 and 90 % of CPU usage for simulation
- Large effort ongoing to process simulation on GPUs
- Partially driven by hardware available in HPC centers

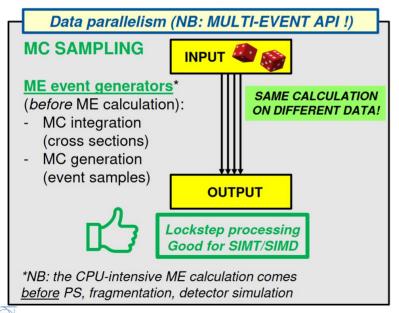


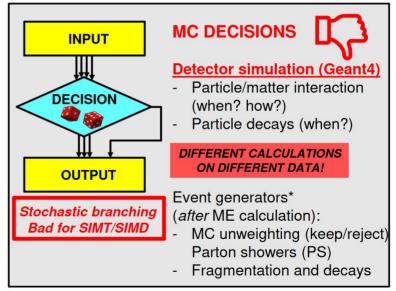
Simulation: Where to use accelerators?

Lockstep? MC generators (*lucky!*) vs MC detector simulation (unlucky)

• Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw







A. Valassi – Data parallelism in Madgraph5_aMC@NLO: vectorization and GPUs

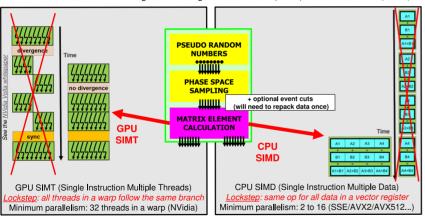
Compute Accelerator Forum - CERN, 8 February 2023

Event generators on GPUs

- Madgraph4gpu project: started in 2020 within HSF Generator WG
- Port MC event generators, in particular matrix element calculation (current bottleneck), to GPUs
- Make use of CUDA's random number generator: cuRAND

Main design idea: event-level data parallelism (lockstep)

- In MC generators, all events in one channel initially go through the same calculations
 - Computing MEs involves the calculation of the exact same function on different data points
 - This is what makes event generators a good fit for GPUs (SIMT) and vector CPUs (SIMD)



A. Valassi – Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs vCHEP – 19 May 2021 10

Executive summary for the impatient Conclusions!

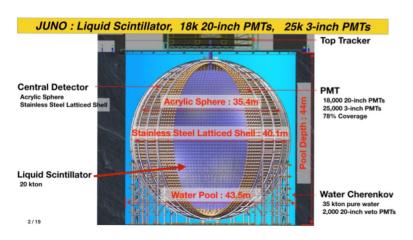
- The Matrix Element calculation in any ME generator can be efficiently parallelized using SIMD or GPUs
- Our reengineering of MG5aMC is close to a first fully functional alpha release for LO QCD processes
 The new ME calculation is integrated in MadEvent we get the same cross section and LHE files as in Fortran!
- On CPUs, in vectorized C++ we reach the maximum x8/x16 (double/float) SIMD speedup for MEs alone
 - -The speedups achieved for the overall workflow are slightly lower due to Amdahl's law, but not much
 - Example: our current overall speedup is x6/x10 (double/float) for gg→ttgg (on one CPU core)
- On GPUs, using CUDA we achieve O(100-1000) speedups for MEs alone over one no-SIMD CPU core
 - -The speedups may be much lower due to Amdahl's law, but we are improving on that
 - -Example: our <u>current overall speedup is x60/x100 (double/float)</u> for gg→ttggg on an NVidia V100
- Floats are x2 faster than doubles in SIMD and NVidia GPUs we also added 'mixed' precision modes
- In SYCL we get ~similar performances to CUDA on NVidia and we may run also on AMD or Intel GPUs
- · Future challenges include optimizing heterogenous processing on one GPU and multiple CPU cores

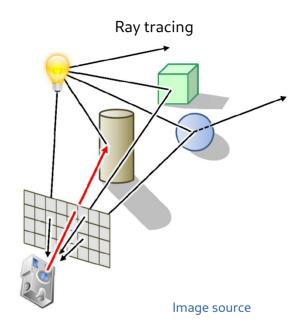
A. Valassi – Data parallelism in Madgraph $5_aMC@NLO: vectorization and GPUs$

Compute Accelerator Forum – CERN, 8 February 2023

Photon simulation with Nvidia OptiX

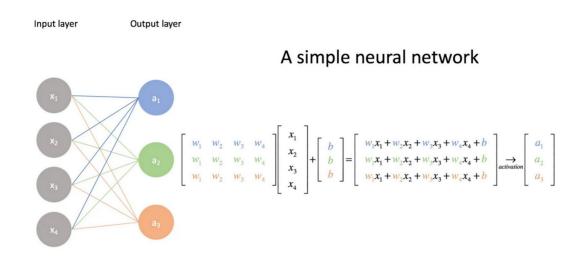
- Photon simulation is similar to ray tracing problem
 → ideally suited workload for GPU
- Opticks framework developed for photon simulation, e.g. in a LAr TPC
- Uses Nvidia's OptiX ray tracing engine and integrated with Geant4





Also IceCube are working on using ray tracing for their photon simulation, see this $vCHEP\ talk$

Machine learning: Training



- Large amount of data to handle: high memory bandwidth on GPUs
- Neural networks are embarassingly parallel problems: matrix multiplication
- Many networks can be trained with reduced precision
- Applications in HEP: Pattern recognition, categorization, fast simulation, ...
- Libraries used: Tensorflow, Keras, PyTorch, ...
- HSF tutorial on machine learning with GPUs

Summary

- We are facing a huge computing challenge in HEP, mainly in real-time reconstruction and simulation
- Cannot be solved solely by using CPU processors
- Trend in HPC is towards heterogeneous architectures
- Heterogeneous architectures are crucial for energy efficient systems
- Make use of many-core accelerators for embarrassingly parallel problems within HEP
- Most popular accelerator: GPUs
- Various experiments have developed and commissioned heterogeneous real-time analysis systems with GPUs
- Extensive R&D also ongoing to use them for simulation
- Frameworks for heterogeneous software are being developed
- Note: Compute Accelerator Forum organized by HEP Software Foundation, Openlab, SIDIS
 Presentations roughly once per month on accelerator topics

Backup

Types of GPUs

	Scientific GPUs	Gaming GPUs	
Precision	~3 times more single precision TFLOPS than double precision	~40 times more single precision TFLOPS than double precision	
Precision	→ suited for double precision	→ not well suited for double precision	
Error correction	Available	Not available	
Connection	NVLink & PCIe	Only PCIe	

R&D to use Graphcore's IPUs

Simulation

- Study usage of IPUs for event generation with fast simulation technique
- Particularly suited for machine learning techniques
- Tested event generation with generative networks (GAN)

Track reconstruction

- Also implemented Kalman filter for track fitting on the IPU
- Multiple Instruction Multiple Data (MIMD) architecture
- → Higher performance observed for conditional control-flow programs
- No direct comparison to GPU implementation

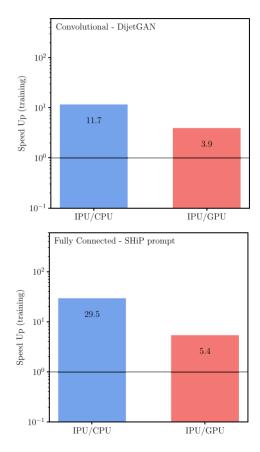
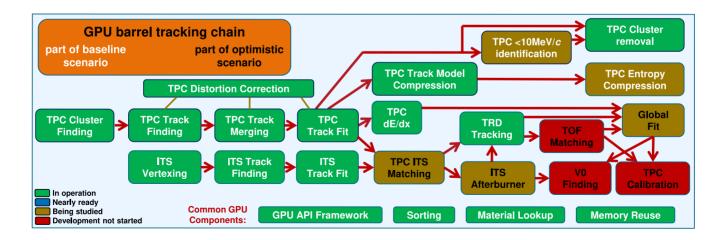


Fig. 3 Comparison of the time to train the IPU relative to the CPU or GPU of Table 1

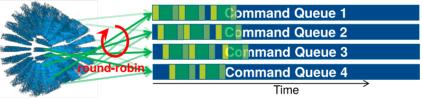
ALICE: Reconstruction on GPUs

- Process 10 ms timeframes, O(10 GB) size
- One detector dominates computing needs: Time Projection Chamber (TPC)
- TPC reconstructed in real time on GPUs for compression and calibration since Run 1
- Also adding reconstruction of other detectors to the GPU workflow
- Aiming to process full barrel reconstruction on GPUs
- New facility for data processing and compression 1500 CPU/GPU nodes, 60 PB storage



ALICE TPC reconstruction on GPUs

- Run several events in parallel
- The event size is large, so not too many events fit into GPU memory at once
- Process the sectors of the TPC in parallel
- Same code base for CPU and GPU code
 - → can run on either architectu



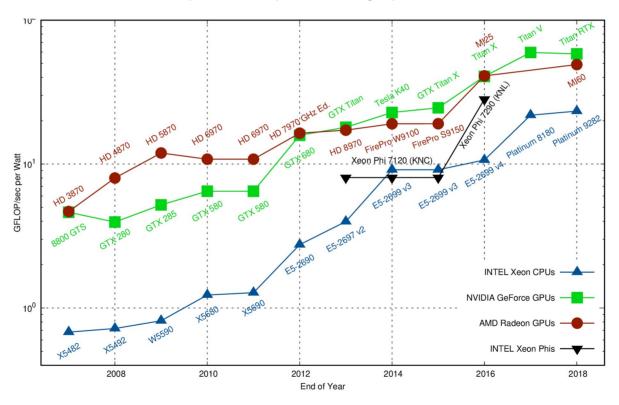
#	Phase	Task	Method	Locality	Time	Device
$\frac{1}{2}$	Ι	Seeding Track following	Cellular Automaton Simple Kalman filter	Very local Sector-local		CPU & GPU CPU & GPU
$\frac{}{3}$	II	Track Merging Final Fit	Matching Covariance Kalman filter	Global Global	- / 0	CPU CPU (or GPU)

arxiv 1712.09430

gas volume

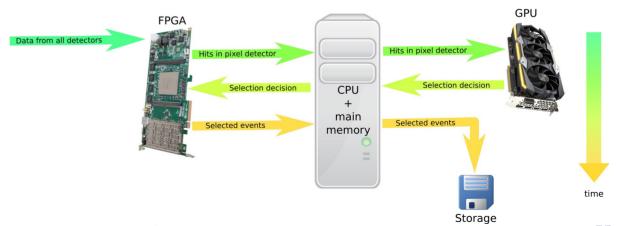
GPU power efficiency

Theoretical peak FLOPs per Watt, single precision



Mu3e experiment

- Fixed target experiment at the Paul Scherrer Institute in Switzerland
- Study lepton flavor violating decay μ⁺ → e⁺e⁻e⁺
- Triggerless readout @ 10 GB/s, reduce to 100 MB/s with GPU filter farm
- Process 50 ns time slices of data
- Linear track fit for low-momentum particles for real-time data selection implemented on GPUs
- Measured 2·10⁶ time slices / s on one Nvidia GTX 1080
 - → Can do full event selection with 12 GPUs
- Planned to start data-taking in 2023



EPJ Web of conferences, 2017

Mu3e Technical Design Report: arXiv2009:11690

GPU power efficiency

Theoretical peak FLOPs per Watt, single precision

