Design patterns and best practices
Thematic CERN School of Computing

Daniel Hugo Campora Pérez
dcampora@cern.ch

2023

Table of Contents

Good practices

Other standards: OpenCL, HIP, SYCL

Middleware libraries: Alpaka, Kokkos

Parallel design patterns

Summary

Resources

% Maastricht University Daniel Campora

Table of Contents

Good practices

Daniel Campora

Precision for computing

When using decimal numbers, one typically uses floating point numbers.

The IEEE 754 standard defines single precision, double precision and half precision as follows:

precision of IEEE754 Fioating Point Values.

TeEe7se

racton @23 bis)

[o[o[efe[e[o[efd]e[o[elefe[o[e[e[e]eeeld] - 0.15625
2 foanden @
exponent fraction
sign (11bit) (52 bit)
1" T 1
)))
63 52 0

107 10° 100 00 100 100 10 10 0 10 10 100 0t
Floating Point Value:

Still, how much precision is enough?

» Depends on use case.
» Use the least you need.

% Maastricht

What precision does your algorithm need?

The answer may not be as simple as one-precision-fits-all. You should consider what precision you need
for storage and for arithmetic!

Arithmetic Storage
Double precision | Double precision
Double precision | Single precision
Single precision | Single precision
Single precision Half precision

Half precision Half precision

% Maastricht University Daniel Campora

Precision matters (a lot) in GPUs

This is especially true for GPUs, where you would have to go for expensive scientific cards to be able to
get good performance with double precision.

GPUName: GAIDZ Release Date: Apr 12th, 2021 Gerorce R 3060 Ti

Gruvarnt: GA1G2 83001 Avatsiiy; 2021
Gerorce 2000,
Aechiecturs: Ampere oo 1 e
=

Foundry. Samsurg. aceon ot 0 I [
Gl (D adeon o0 T [

Processsze: 8m
susintrtace; PCle40x15 Gerore 000 [%
Transistors: 28300 millon aorcie (I 100%

- Gock Spesds Fadeon oxcsoo 7 [o1

Gerorce D¢ 30007) [07
[P ——.

Gefore 050 I -
Boostcoc 1635 WHz e .

Memory ze: 2468 n

Memry Clock: 1563 M

CoET B Board Design Shading Units: 9216 Pixel Rate: 1627 GPbells

Bandwidth: 6002 GBls Stotwidth: Singlesiot T™Us: 288 Texture Rate: 488.2 GTexels
P Rops: 35 P16 el 3126 FLOPS (1)
05 ches performance
Scoune 72
) Width: 112 mm FP32(float) 3124 TFLOPS.
inches ensor Cores: performance
j— 4 inch Tensor Cores: 268
ToR: 150w Rrcores: 72 pei double) STEICRLOPSIIED
openct: 30 performance:
esedpsu; 450 L1 Cacher 126K per s¥)
Vulkan: 1.2 bt b sk
utputs: No outputs [r—
cuon: 85 Outputs: Nooutputs

Power 8pin £PS

Shader Model: 6.6 Connectors

Board Number: PG133SKU21S

Source: TechPowerUp

bﬂ Maastricht University Daniel Campora

Floating point rounding

The standard describes four rounding modes:

» round to nearest (typically the default)
» round down

» round up

» round towards zero

In addition, Fused Multiply-Add (FMA) units add precision and performance when doing floating point
operations... which changes slightly the result!

With no optimization flags, GPU compilers have FMAs turned on as opposed to CPU compilers. However,
as a general rule one should not expect FP bit-level precision across different architectures or compilers,
even if they run under the same standard!

Dﬂ Maastricht University Daniel Campora

Floating point rounding - An example

Consider the dot product example:

ay by

I L7 R Y

a=|g, b= b, a-b=a,by+ab,+asbs+aub,
a b

Daniel Campora

Dot product - Serial approach

In the serial approach, every element is calculated sequentially.

®/ a3f ’\b3 im0

/ a2? \b2 for i from 1 to 4
p=rn (aj X b
t=m(t+p)

return ¢

P Maastricht University Daniel Campora

Dot product - FMA method

Using FMAs, each subsequent multiplication and addition is done in one instruction.

ot
b4
@ a4

a3r \b3 t=0

forifrom1to 4
N t=rn (a;x b +1)

ﬁ a2 b2 return ¢
a1r\b1 @ Fused multiply-add

0

P Maastricht University Daniel Campora

Dot product - Parallel method

The parallel method divides the problem such that each multiplication is done, followed by the additions, in
a Divide and Conquer approach.

pI=m (a7 xbj)
p2=rn (a3 x by)
p3=m (a3 x b3)
P4=1n (agxby)
sleft = (p] + p2)
Sright =0 (p3 + p4)
b 7 7 7 £ =1 (lgft + Sright)

al b1 a2 b2 a3 b3 a4 b4 return ¢

Daniel Campora

Results

The results for vectors:
a=[1.907607, —0.7862027,1.147311,0.9604002]

b = [—0.9355000, —0.6915108, 1.724470, —0.7097529]

method | result float value
exact .05659587528435... | 0x3D65350158...
serial .0559588074 0x3D653510
FMA .0559587515 0x3D653501
parallel .0559587478 0x3D653500

% Maastricht University

Daniel Campora

Compiler flags

Last, you have some control over how your computation is done. You may want to consider fast math,
which can impact performance and results quite substantially.

mode flags

-ftz=false

IEEE 754 mode (default) | -prec-div=true
-prec-sqrt=true
-ftz=true

fast mode -prec-div=false
-prec-sqrt=false

Bear in mind with fast mode:

» Denormals are flushed to zero.

» Division and square root are not computed to the nearest FP value.

Daniel Campora

A practical example

What is wrong with the following code?

1 __global__ void shared_memory_example(float* dev_array) {
2 for (int i = threadIdx.x; i < 256; i += blockDim.x) {
3 dev_array[i] = 1 / std::sqrt(2. + dev_arrayl[il);

4 }

5 }

Listing: FP example.

% Maastricht University

Daniel Campora

A practical example

What is wrong with the following code?

1 __global__ void shared_memory_example(float* dev_array) {
2 for (int i = threadIdx.x; i < 256; i += blockDim.x) {
3 dev_array[i] = 1 / std::sqrt(2. + dev_arrayl[il);

4 }

5 }

Listing: FP example.

Use compiler flag -Wdouble-promotion to avoid surprises!

% Maastricht

Register spilling

Every thread has a maximum number of registers it can use:

» In GPUs, this limit is configurable (typically between 63 and 255).
» [f this limit is surpassed, the kernel will use local memory as swap space.

It is "local" because each thread has its own private area. It is actually stored in global memory (yes, the
slow one).

% Maastricht University Daniel Campora

Register spilling (2)

Developers have no control over the spilling process:

» Address of global memory where memory is swapped is resolved by compiler.
» Stores are cached in L1 memory.

Daniel Campora

Register spilling (2)

Developers have no control over the spilling process:

» Address of global memory where memory is swapped is resolved by compiler.
» Stores are cached in L1 memory.

Spilling could hurt performance:

» Increases memory traffic
» Increases instruction count

Daniel Campora

Register spilling (2)

Developers have no control over the spilling process:

» Address of global memory where memory is swapped is resolved by compiler.
» Stores are cached in L1 memory.

Spilling could hurt performance:

» Increases memory traffic
» Increases instruction count

But it is not always bad:

» |f accesses are cached
» |f your code is not instruction-throughput limited

Daniel Campora

How to deal with register spilling

One can evaluate the impact of register spilling through profiling.
The developer has several tools to impact register spilling:
Increase globally the amount of registers per kernel.

Increate the amount of configurable L1 cache.
Some compilers allow to specify non-caching loads for global memory.

vvyyy

__launch_bounds__ (HIP, CUDA) — Controls maximum threads per block and minimum blocks per
SM. These two impact the number of registers in a kernel.

% Maastricht University Daniel Campora

Write single-source kernels

It is possible to organize the code with several header files, containing definitions, and source files, con-
taining implementations.

However, doing so in GPU code heavily affects performance. The reason is that the compiler optimizes
functions to use a number of registers, shared memory and threads, and it cannot perform that optimization
if the compilation unit cannot see all code involved.

In other words, if your __global__ function calls __device__ functions either free standing or within
structs, those should be defined in either:

» The same source file.
» A header file, either templated or inlined.

Daniel Campora

A practical use-case: The Velo Pixel subdetector of LHCb

VELO Search by triplet performance evolution (GeForce RTX 2080 Ti)

e Search by uiplet mpementaion
P imlemerid

4 Full ELO pipsine on GPU (decoding. clustering and tracking).
515 Use shored memory i soring ot
Comple stting maxrregcount et to 64
St O b M oo
Shaays consoicae ok

500 B deacR kel o parameters
Separae il condidates and sk trocks adder krnels
Gy sl s v s Forard erch
se thrse it clas for rackets. H

Implemented GEC

s smped cater ncton s+ .
mpementea GO prefx

emaves maxregeaun settng
Version ampieyed for review (e 2019)

Move to contiguration ramework

IS

e it store VELO it coordinates.
Use A0S for VELO Rt coornater

Version ampleyed for TOR (Apr, 20201

00 Adopt penulum search or nial doublet.

Rertose il caniines

G binary search i seeding.
Improverent o decoang

Speedup (times)

s o e ot sl s
Frtiarias

s+ Tune defout number of theacs to 64,
5555 S detau properes accoring o porameter scan.

VELO sequence throughput (kHz)

wi® @3® R @1 1 @1 229 2

% Maastricht University Daniel Campora

Table of Contents

Other standards: OpenCL, HIP, SYCL

% Maastricht University Daniel Campora

OpenCL

7 A
OpenCL

OpenCL™ (Open Computing Language) is a multi-vendor open standard for general-purpose parallel pro-
gramming of heterogeneous systems that include CPUs, GPUs, and other devices.

OpenCL 3.0 was released in September 2020:

» |t has increased the flexibility by making every functionality from OpenCL 1.2 onwards optional and
queryable.

» C++ for OpenCL adopts C++17.

» Unified specification.

% Maastricht University Daniel Céampora

OpenCL compilation

OpenCL can either be compiled offline or online:

» Offline compilation: Kernel is pre-built with an OpenCL compiler. Pro: It runs with low invocation
latency. Con: It is compiled for a specific architecture.

» Online compilation: Kernel source code is distributed instead. Pro: It can run on various
architectures. Con: It needs to be JIT-compiled.

Offline compilation is supported through the clang compiler:

OpenCL C SP_II_R-V LILVM IR 77"a
ranslator N
(and other optional @R .— OpenCL
C++ for OpenCL LLVM SPIR-V tools)

Language Definitions

OpenCL Offline Compiler Flow

Daniel Campora

https://clang.llvm.org/docs/OpenCLSupport.html

C++ for OpenCL

C++17 support has arrived with the new C++ for OpenCL. The current C++ support has some caveats:

2.1.1. Restrictions to C++ features
The following C++ language features are not supported:

« Virtual functions (C++17 [class.virtual]);

References to functions including member functions (C++17 [class.mfct]);

Pointers to class member functions (in addition to the regular non-member functions that are
already restricted in OpenCL C);

Exceptions (C++17 [except]);

dynamic_cast operator (C++17 [expr.dynamic.cast]);

Non-placement new/delete operators (C++17 [expr.new]/[expr.delete]);

Standard C++ libraries (C++17 [1ibrary]).

You can try yourself with godbolt.

Dﬂ Maastricht University Daniel Campora

https://godbolt.org/z/8sMa4xbev

Status of OpenCL as of 2021

» OpenCL is perhaps staying relevant after all these years.
» |t has gained back an implementation by NVIDIA.

» At the same time, Apple stopped supporting OpenCL (in favor of Metal) and so did AMD (in favor of

ROCm).
arm
© codeplay” Imagination
L e oy
pen . N Al
Adopters @ Microsoft m (lntel shir::i?;
.s. ' Conformant
“22 QNI Implementations
QUALCOMWW @DZ
@snicon NVIDIA.

For more information on OpenCL check out:

» Khronos website on OpenCL
» IWOCL 2021 presentation

Dﬂ Maastricht University Daniel Campora

https://developer.nvidia.com/blog/nvidia-is-now-opencl-3-0-conformant/
https://www.khronos.org/opencl/
https://www.iwocl.org/wp-content/uploads/k03-iwocl-syclcon-2021-trevett-updated.mp4.pdf

ROCm

o
RO
Cm

AMD ROCm is the first open-source software development platform for HPC/Hyperscale-class GPU com-
puting.

ROCm is a platform that has appeared in recent years and is quickly evolving and adapting. It includes:

» Frameworks (Tensorflow / Pytorch).
» Libraries (MIOpen / Blas / RCCL).
» Programming model (HIP).

» Inter-connect (OCD).

% Maastricht University Daniel Campora

HIP

HIP is a high performance, CUDA-like programming model that is built on an open and portable framework.

HIP has several advantages:

» It supports C++17.

» It is almost a 1:1 copy of CUDA — most of the time changes required are very minimal and
non-intrusive.

» |t supports AMD and NVIDIA targets.

% Maastricht University Daniel Campora

HIP == CUDA?

Library call prefix is hip instead of cuda.
Warp size depends on GPU: 64 on AMD and 32 on NVIDIA.
Profiling / debugging is in its infancy.

>

>

>

» No support for latest consumer cards (yet?).

» Low-level calls are different, later CUDA syntax developments are (will always be?) ahead of HIP.
>

Specialized hardware (tensor cores, ray tracing) is naturally not there.
It has great potential, especially as more libraries get translated to HIP. For more information:

» ROCm docs

b Maastricht University Daniel Campora

https://rocmdocs.amd.com/en/latest/

SYCL

GyeL.

SYCL 2020’s primary goal is to achieve closer convergence with ISO C++, furthering our work to bring
parallel heterogeneous programming to modern C++ through open standards.

» It supports C++17, its intent is to become part of the standard.

> |t attempts to support everything (CPUs, AMD GPUs, NVIDIA GPUs, Intel GPUs, Intel FPGAS).

» SYCL is built on top of OpenCL and SPIR-V (the low-level representation shared by eg. Vulkan or
OpenGL).

bﬂ Maastricht University Daniel Campora

From the creators of...

It is another standard developed by the Khronos group (same as OpenCL).

HOW STANDARDS PROUFERATE:
(568 AC CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, £1C)

17! RDICULoUS!
WE NEED To DEVELOP
STUATION: || SEUNERAL SHORD || SiTUATION:
THEREARE || USE CASES. iy THERE. ARE
4 COMPETING ‘O) I5 COMPETING
STANDPRS.

R

Daniel Campora

D Maastricht University

SYCL to everything

SYCL, OpenCL and SPIR-V, as open industry SYCL enables Khronos to
standards, enable flexible integration and ‘SYCL influence ISO C++ to (eventually)

of multiple Source Code) support heterogeneous compute

© codeplay’y” ¢ computeCpo £ XILNX. (hipSYCLY pnversimir

DPC++ i triSYCL hipSYCL neoSYCL
Uses LLVM/Clang Multiple Open source CUDA and SX-AURORA
Part of oneAPI test bed HIP/ROCm TSUBASA

Any CPU CUDA+PTX
NVIDIA GPUs
OpenCL + o P TY OpenCL + RC
SPIR-V SPI SPIR/LLVM > Intel CPUs
g - NEC VEs
Intel CPUs Intel CPUs XILINX FPGAs
Intel GPUs Intel GPUs POCL
Intel FPGAs Intel FPGAs ik Multiple Backends in Development
AMD GPUs GeUsand more) SYCL beginning to be supported on multiple
“"‘”:;: m"“*’ m low-| Ievel APIs in addition to OpenCL
IMG PowerVR 2., ROCm and CUDA
Renesas R-Car For more inlormaﬂon ttp://sycl.tech

bﬂ Maastricht University Daniel Campora

Status of SYCL

SYCL recently released the SYCL 2020 specification.

» Intel supports SYCL as a first-class citizen through its release of OneAPI.
» Intel GPUs are coming.

» Syntax is not easily translatable from CUDA / HIP. Adapting requires work.
» There is no one-size-fits-all and there will never be.

» Given that CUDA is a low-level language, adapting to a higher level one may not be in your best
interest if performance is your goal.

In spite of all that SYCL looks very interesting, the next few years will determine whether the language has
wide adoption.

Dﬂ Maastricht University Daniel Campora

https://www.khronos.org/news/press/khronos-releases-sycl-2020-final-specification
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://www.tomshardware.com/news/intel-dg2-desktop-lineup-detailed-rumor
https://nazavode.github.io/blog/sycl/
https://www.youtube.com/watch?v=KHa-OSrZPGo

Table of Contents

Middleware libraries: Alpaka, Kokkos

Daniel Campora

Alpaka

al~aka

The alpaka library is a header-only C++14 abstraction library for accelerator development.

> |t acts as a middle layer that can target CPU, NVIDIA GPUs or AMD GPUs through a variety of
backends.

» C++-style APl which is optimized away by the compiler.

% Maastricht University Daniel Campora

Alpaka backends

&

Maastricht University

Accelerator Back-
end

Serial

OpenMP 2.0+
blocks

OpenMP 2.0+
threads

OpenMP 5.0+

OpenACC
(experimental)

std:thread

Boost.Fiber

CUDA

HIP(clang)

Lib/API

nfa

OpenMP 2.0+

OpenMP 2.0+

OpenMP 5.0+

OpenACC 2.0+

std::thread

boost:fibers:fiber

TBB 2.2+

CUDA 9.0+

HIP 4.0+

Devices
Host CPU
(single core)

Host CPU
(multi core)

Host CPU
(multi core)

Host CPU
(multi core)

GPU

Host CPU
(multi core)

GPU

Host CPU
(multi core)

Host CPU
(single core)

Host CPU
(multi core)

NVIDIA GPUs

AMD GPUs

Execution strategy
grid-blocks

sequential

parallel (preemptive
multitasking)

sequential

parallel (undefined)

parallel (undefined)

parallel (undefined)

parallel (undefined)

sequential

sequential

parallel (preemptive
multitasking)

parallel (undefined)

parallel (undefined)

aniel Campora

Execution strategy
block-threads

sequential (only 1
thread per block)
sequential (only 1
thread per block)

parallel (preemptive
multitasking)

parallel (preemptive
multitasking)

parallel (lock-step
within warps)
parallel (preemptive
multitasking)

parallel (lock-step
within warps)

parallel (preemptive
multitasking)

parallel (cooperative
multitasking)

sequential (only 1
thread per block)

parallel (lock-step
within warps)

parallel (lock-step
within warps)

Alpaka hello world kernel

#include <alpaka/alpaka.hpp>
//' Prints "[x, y z][gtid] Hello World" where tid is the global thread number.

)

struct HelloWorldKernel

ALPAKA_FN_ACC auto operator () (TAcc const& acc) const -> void

1

2

3

4

5 template<typename TAcc>
6

7 {

8

Dim<TAcc>;

using Dim =

9 using Idx = Idx<TAcc>;

10 using Vec = :Vec<Dim, Idx>;

11 using Vecl = Vec<alpaka::DimInt<iu>, Idx>;

12

13 Vec const globalThreadIdx = alpaka::getIdx<alpaka::Grid, alpaka::Threads>(acc);

14 Vec const globalThreadExtent = alpaka::getWorkDiv<alpaka::Grid, alpaka::Threads>(acc);
15 Vecl const linearizedGlobalThreadIdx = alpaka::mapIdx<iu>(globalThreadIdx, globalThreadExtent);
16

17 printf (

18 "[z:%u,uy:%u,ux:%ul [linear:%u] Hello World\n",

19 static_cast<unsigned>(globalThreadIdx [0ul),

20 static_cast<unsigned>(globalThreadIdx[1ul),

21 static_cast<unsigned>(globalThreadIdx [2ul),

22 static_cast<unsigned>(linearizedGlobalThreadIdx [0ul));

23 }

24 };

Listing: Alpaka Hello World.

% Maastricht University Daniel Céampora

Should you use Alpaka?

It depends on the priorities of your project:

» |t provides portability across different platforms.
» Easier to maintain.

» There is a delay between appeareance of new features and Alpaka support.

» |t remains a thin library, but doesn’t give you the same control and flexibility as a low-level language
(CUDA, HIP).

» Requires learning a different language extension which is not so widely adopted and departs from
others (learning curve).

Materials on Alpaka:

» Repository, documentation.
» Online tutorial.

Dﬂ Maastricht University Daniel Campora

https://github.com/alpaka-group/alpaka
https://alpaka.readthedocs.io/en/latest/basic/intro.html
https://indico.cern.ch/event/912156/

Kokkos

Py
-

Kokkos Core implements a programming model in C++ for writing performance portable applications tar-
geting all major HPC platforms.

» Very similar to Alpaka, also a header-only library.
» C++ Middle layer that targets CPU, NVIDIA, AMD platforms.

% Maastricht University Daniel Campora

Kokkos Core Capabilities

p-

Parallel Loops

Parallel Reduction

Tightly Nested
Loops

Non-Tightly Nested
Loops

Task Dag

Data Allocation
Data Transfer
Atomics

Exec Spaces

Maastricht University

parallel_for(N, KOKKOS_LAMBDA (int i) { ...BODY... });
parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {
...BODY...

upd += ...
}, Sum<>(result));

parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3}{T1,T2,T3},
KOKKOS_LAMBDA (int i, int j, int k) {...BODY....});

p |_for(TeamPolicy Dy ic>>(N, TS), KOKKOS_LAMBDA (Team team) {
... COMMON CODE 1 ...
parallel_for(TeamThreadRange(team, M(N)), [&] (intj) { ... INNER BODY... });

... COMMON CODE 2 ...
»

task_spawn(TaskTeam(scheduler , priority), KOKKOS_LAMBDA (Team team) { ... BODY });
View<double**, Layout, MemSpace> a(‘A”,N,M);

deep_copy(a,b);

atomic_add(&ali],5.0); View<double*,MemoryTraits<AtomicAccess>> a(); a(i)+=5.0;

Serial, Threads, OpenMP, Cuda, HPX (experimental), ROCm (experimental)

Daniel Campora

Kokkos reduction kernel

struct squaresum {
using value_type = int;
KOKKOS_INLINE_FUNCTION
void operator () (const int i, int& lsum) const {
lsum += i * i; // compute the sum of squares
}
1

int n = 10, sum = 0;
Kokkos::parallel_reduce(n, squaresum(), sum);

SCO@®N® O R WD =

Listing: Kokkos reduction kernel.

% Maastricht University Daniel Céampora

Should you use Kokkos?

» |t provides portability and maintainability.
» It provides some higher level functionality (eg. parallel_reduction, execution policies).

» Documentation is scarce, learning curve.
» |t provides a subset of low-level functionality of vendor-driven languages (CUDA, HIP, SYCL).

Materials on Kokkos:

» Repository.
» GTC presentation, video.

% Maastricht University Daniel Campora

https://github.com/kokkos/kokkos
https://on-demand.gputechconf.com/gtc/2015/presentation/S5166-H-Carter-Edwards.pdf
http://on-demand.gputechconf.com/gtc/2015/video/S5166.html

Bonus: Portability in CUDA / HIP?

» CUDA and HIP are very similar standards.

v

Kernel language is practically the same for most use-cases.

» For hardware-specific optimizations (eg. tensor cores), you would have to implement a portable
version by hand for portability.

» Utility functions (memcpy, memset, malloc, kernel invocation...) can be defined with macros or a
hand-made middle language.

» In practice, making your own middleware just for utility functions is very little work.

» |t is therefore possible to have one codebase with a low-maintainance self-developed wrapper just
covering your utility / kernel needs.

> |f targeting performance, it is always better to use the native solution.
» What about CPU execution?

Dﬂ Maastricht University Daniel Campora

Bonus: CUDA / HIP running on CPU?

If the CUDA code satisfies that it produces the same result when invoked with a block dimension of {1,
1, 1} —orin other words:

» for-loops over threads are block-dimension strided.
» if-statements for a single thread refer to threads of index 0.

Then, with some macros and function definitions it is possible to compile the code for CPUs.

See the following presentation for details.

% Maastricht University Daniel Campora

https://indico.cern.ch/event/962110/contributions/4047365/attachments/2141233/3607966/dcampora_dovombru_acc_forum.pdf

So, standard or middleware?

v

Standards offer the best performance for their native platform.
» Middlewares offer portability.

» |t is possible to obtain good performance on a middleware.

> Low-level functions not supported by the middleware will require your own implementation across
vendors (high effort).

» |t is possible to achieve portability between CUDA / HIP / CPU.

» You may want to focus on a single CPU backend if you do this (as opposed to the many variants
offered by Alpaka for instance).

» You will maintain the portability layer.

What is your application’s main target?

Dﬂ Maastricht University Daniel Campora

Table of Contents

Parallel design patterns

Daniel Campora

Data parallel vs streaming patterns

Data parallel patterns Streaming patterns
> Map > Farm
> Farm > Pipeline
» Reduction
» Stencil

bﬂ Maastricht University Daniel Campora

Data parallel vs streaming parallel patterns

» Size of the input + dependencies between items define which pattern to use.
» Data parallel patterns may not be efficient in streaming scenarios, and the other way around.

» For streaming patterns, there is usually one (or more) input items that distributes the input elements
to working items as they come.

% Maastricht University Daniel Campora

Map (parallel)

» Used on embarrassingly parallel
collections of items.

» Same function applied to every item, all at
the same "time".

» Applicable if all items are independent.

» Usually good candidate for SIMD
abstractions.

Used in
Ray tracing, Monte Carlo simulations.

Daniel Campora

Stencil (parallel)

» When for every item of a collection, we
need data from the neighbourhood items.

» Usually a fixed number of neighbourhood
is accessed.

» Boundary conditions have to be taken into
account.

» Data reuse in the implementation (cache).

Used in

Signal filtering, image processing, grid
methods.

D Maastricht University

800
800

Co0000aOE
0000000
0000000
000006

Stencil (parallel)

» When for every item of a collection, we
need data from the neighbourhood items.

» Usually a fixed number of neighbourhood
is accessed.

» Boundary conditions have to be taken into
account.

» Data reuse in the implementation (cache).

Used in

Signal filtering, image processing, grid
methods.

D Maastricht University

0000000

0000000

000006

Farm (parallel streaming)

» Similar to map, but size of collection is not
known in advance.

» Used for embarrassingly parallel
computations in stream computations.

» There is at least one producer item.

Used in
Used in HEP online trigger software.

bﬂ Maastricht University

Daniel Campora

Pipeline (streaming)

» Size of collection not needed in advance.

» Different steps run in parallel, but others
may not be able to run in parallel.

» Different functions are applied in different
steps, where the order is important.

Used in

image filtering, signal processing, game
engines.

p-

) Maastricht University Daniel Campora

Pipeline (streaming)

» Size of collection not needed in advance.

» Different steps run in parallel, but others
may not be able to run in parallel.

» Different functions are applied in different
steps, where the order is important.

Used in

image filtering, signal processing, game
engines.

p-

) Maastricht University Daniel Campora

Pipeline (streaming)

» Size of collection not needed in advance.

» Different steps run in parallel, but others
may not be able to run in parallel.

» Different functions are applied in different
steps, where the order is important.

Used in

image filtering, signal processing, game
engines.

p-

) Maastricht University Daniel Campora

Pipeline (streaming)

» Size of collection not needed in advance.
» Different steps run in parallel, but others
may not be able to run in parallel.

» Different functions are applied in different
steps, where the order is important.

Used in

image filtering, signal processing, game g

engines. | T i,,l,j o
N [A A

p-

) Maastricht University Daniel Campora

Pipeline (streaming)

» Size of collection not needed in advance.

» Different steps run in parallel, but others
may not be able to run in parallel.

» Different functions are applied in different
steps, where the order is important.

Used in

image filtering, signal processing, game
engines.

p-

) Maastricht University Daniel Campora

Pipeline (streaming)

» Size of collection not needed in advance.

» Different steps run in parallel, but others
may not be able to run in parallel.

» Different functions are applied in different
steps, where the order is important.

Used in

image filtering, signal processing, game
engines.

% Maastricht University

Daniel Campora

Pipeline (streaming)

» Size of collection not needed in advance.

» Different steps run in parallel, but others
may not be able to run in parallel.

» Different functions are applied in different
steps, where the order is important.

Used in

image filtering, signal processing, game
engines.

p-

) Maastricht University Daniel Campora

Pipeline (streaming)

» Different steps run in parallel, but others
may not be able to run in parallel.

» Different functions are applied in different ! 77777
steps, where the order is important. ¥

» Size of collection not needed in advance. Q

———————————————————

Used in RN B S S 5

-

U T oo
image filtering, signal processing, game § §
engines. o i o

p-

) Maastricht University Daniel Campora

Reduction (sequential)

» Combines a collection of items into one,
with a defined operation.

» Many different partition options.

» Elements depend on each other, but are
associative.

Used in

Matrix operations, computing of statistics on
datasets.

Daniel Campora

[

Figure: Sequential reduction

Reduction (parallel)

» Combines a collection of items into one,
with a defined operation.

» Many different partition options.

» Elements depend on each other, but are
associative.

Used in

Matrix operations, computing of statistics on
datasets.

D Maastricht University

Daniel Campora

l

N

Figure: Parallel reduction

Prefix sum example

The prefix sum is a problem that consists in calculating the accumulated sum at every element of an array.
For example:

» Number of tracks per event: [10, 15, 32, 45, 24]
> Prefix sum: A = [0,10, 25,57, 102, 126]

The prefix sum of an array of numbers is extremely useful. It provides:

» The accumulated sum of the entire array (last element).
> The offset of each element (on element A[/]).
» The size of each element (A[i 4+ 1] — A[f]).

% Maastricht University Daniel Campora

Efficient GPU prefix sum: Blelloch scan

The Blelloch scan consists in performing two sweeps of the data.

> up-sweep — the tree is traversed from leaves to root computing partial sums.

| X, |Z[x‘,.‘x‘)| X, | Ex,.x) X, |th‘..x,)| X, | Zlxgex)
d=2
% | Tex) | x [Eeead | x |Eeex)| % | Elxpek,)
d=1
[=[] x || o [mew]| o [
a0 1 1 1
| T | xR | . |

This is actually a reduction!

% Maastricht University Daniel Campora

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

Efficient GPU prefix sum: Blelloch scan (2)

» up-sweep — the tree is traversed from leaves to root computing partial sums.

» down-sweep — the tree is traversed from root to leaves. Each node of the current level passes its
value to the element on the left, and the sum of the former and current value on the right.

‘ x, |z("n““|3| %, |ztx,~x,>| % |ztx.--x,J| x, |Z[xo-~>‘,3|

Zero
[% || x [m| « [men] o [o |
d=0 g sreesneaet
| X, |th‘,..x,) X, 0 X, E(x,.x) X, |Z(x,..x._,]|
d=1 s 3 T —gonee |
|4 ¥
[% [o] = [mn] x Jmn] » [men]
d=2 e g s]
» » »
B e e e e

% Maastricht University Daniel Céampora

LHCb HLT1

The prefix sum is an essential tool of the LHCb HLT1 reconstruction.

VELO esti-
mate input size

SciFi calculate
cluster count v4

|

1 UT calculate
i number of hits

|

VELO clusters

Prefix sum
UT hits

Prefix sum SciFi hits

Prefix sum muon
pre decoding

|

|

|

‘ Prefix sum ‘1

VELO mask
clustering

SciFi pre decode v4

Muon sort station
region quarter

VELO decoding
and clustering

|

SciFi raw bank
decoder v4

Muon add coords
crossing maps

UT find permutation

|

|

‘ UT pre decode ‘
banks in order !

|

[UT decode raw }

decoder v4

|

[SciFi direct }

Prefix sum muon
station ocurrence

UT decoding

|

Muon decoding

Figure: Decoding sequences detail.

&

Maastricht University

Daniel Campora

Table of Contents

Summary

Daniel Campora

Summary

» Precision affects performance, especially in GPUs.

» GPUs implement IEEE754 standard, deviations are to be expected from compiler / architecture
variability.

» Be mindful about register spilling.
» Prefer single-source kernels.

» Choose your standard wisely if targeting best performance.
» Consider middlewares if targeting portability.
» |t is possible to obtain portability with a standard, and to obtain performance with a middleware.

» Design patterns are a powerful high-level design tool.
» Know your patterns, design algorithms better.

% Maastricht University Daniel Campora

Table of Contents

Resources

Daniel Campora

Resources used in the talk

» GPU Teaching Kit on Accelerated Computing

» Local Memory and Register Spilling by Paulius Micikevicius

» Precision and Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs, white paper
» From sequential to parallel programming with patterns by Placido Fernandez

% Maastricht University Daniel Campora

	Good practices
	Other standards: OpenCL, HIP, SYCL
	Middleware libraries: Alpaka, Kokkos
	Parallel design patterns
	Summary
	Resources

