
Design patterns and best practices

Thematic CERN School of Computing

Daniel Hugo Cámpora Pérez
dcampora@cern.ch

2023

Table of Contents

Good practices

Other standards: OpenCL, HIP, SYCL

Middleware libraries: Alpaka, Kokkos

Parallel design patterns

Summary

Resources

Daniel Cámpora 2023 2

Table of Contents

Good practices

Other standards: OpenCL, HIP, SYCL

Middleware libraries: Alpaka, Kokkos

Parallel design patterns

Summary

Resources

Daniel Cámpora 2023 3

Precision for computing

When using decimal numbers, one typically uses floating point numbers.

The IEEE 754 standard defines single precision, double precision and half precision as follows:

Precision of IEEE754 Floating Point Values

IEEE754 Single Precision (32-bit)

IEEE754 Double-Precision (64-bit)

Floating Point Value
10

-12
10

-10
10

-8
10

-6
10

-4
10

-2
10

0
10

2
10

4
10

6
10

8
10

10
10

12

Fl
o
a
ti

n
g
 P

o
in

t
P
re

ci
si

o
n

10
10

10
8

10
6

10
4

10
2

10
0

10
-2

10
-4

10
-6

10
-8

10
-10

10
-12

10
-14

10
-16

10
-18

10
-20

10
-22

10
-24

10
-26

10
-28

Still, how much precision is enough?

▶ Depends on use case.
▶ Use the least you need.

Daniel Cámpora 2023 4

What precision does your algorithm need?

The answer may not be as simple as one-precision-fits-all. You should consider what precision you need
for storage and for arithmetic!

Arithmetic Storage
Double precision Double precision
Double precision Single precision
Single precision Single precision
Single precision Half precision
Half precision Half precision

Daniel Cámpora 2023 5

Precision matters (a lot) in GPUs

This is especially true for GPUs, where you would have to go for expensive scientific cards to be able to
get good performance with double precision.

Source: TechPowerUp

Daniel Cámpora 2023 6

Floating point rounding

The standard describes four rounding modes:

▶ round to nearest (typically the default)
▶ round down
▶ round up
▶ round towards zero

In addition, Fused Multiply-Add (FMA) units add precision and performance when doing floating point
operations... which changes slightly the result!

With no optimization flags, GPU compilers have FMAs turned on as opposed to CPU compilers. However,
as a general rule one should not expect FP bit-level precision across different architectures or compilers,
even if they run under the same standard!

Daniel Cámpora 2023 7

Floating point rounding - An example

Consider the dot product example:

Daniel Cámpora 2023 8

Dot product - Serial approach

In the serial approach, every element is calculated sequentially.

Daniel Cámpora 2023 9

Dot product - FMA method

Using FMAs, each subsequent multiplication and addition is done in one instruction.

Daniel Cámpora 2023 10

Dot product - Parallel method

The parallel method divides the problem such that each multiplication is done, followed by the additions, in
a Divide and Conquer approach.

Daniel Cámpora 2023 11

Results

The results for vectors:

a = [1.907607,−0.7862027, 1.147311, 0.9604002] (1)

b = [−0.9355000,−0.6915108, 1.724470,−0.7097529] (2)

is:

method result float value
exact .0559587528435... 0x3D65350158...
serial .0559588074 0x3D653510
FMA .0559587515 0x3D653501
parallel .0559587478 0x3D653500

Daniel Cámpora 2023 12

Compiler flags

Last, you have some control over how your computation is done. You may want to consider fast math,
which can impact performance and results quite substantially.

mode flags

IEEE 754 mode (default)
-ftz=false
-prec-div=true
-prec-sqrt=true

fast mode
-ftz=true
-prec-div=false
-prec-sqrt=false

Bear in mind with fast mode:

▶ Denormals are flushed to zero.
▶ Division and square root are not computed to the nearest FP value.

Daniel Cámpora 2023 13

A practical example

What is wrong with the following code?

1 __global__ void shared_memory_example(float* dev_array) {
2 for (int i = threadIdx.x; i < 256; i += blockDim.x) {
3 dev_array[i] = 1 / std::sqrt (2. + dev_array[i]);
4 }
5 }

Listing: FP example.

Use compiler flag -Wdouble-promotion to avoid surprises!

Daniel Cámpora 2023 14

A practical example

What is wrong with the following code?

1 __global__ void shared_memory_example(float* dev_array) {
2 for (int i = threadIdx.x; i < 256; i += blockDim.x) {
3 dev_array[i] = 1 / std::sqrt (2. + dev_array[i]);
4 }
5 }

Listing: FP example.

Use compiler flag -Wdouble-promotion to avoid surprises!

Daniel Cámpora 2023 15

Register spilling

Every thread has a maximum number of registers it can use:

▶ In GPUs, this limit is configurable (typically between 63 and 255).
▶ If this limit is surpassed, the kernel will use local memory as swap space.

It is "local" because each thread has its own private area. It is actually stored in global memory (yes, the
slow one).

Daniel Cámpora 2023 16

Register spilling (2)

Developers have no control over the spilling process:

▶ Address of global memory where memory is swapped is resolved by compiler.
▶ Stores are cached in L1 memory.

Spilling could hurt performance:

▶ Increases memory traffic
▶ Increases instruction count

But it is not always bad:

▶ If accesses are cached
▶ If your code is not instruction-throughput limited

Daniel Cámpora 2023 17

Register spilling (2)

Developers have no control over the spilling process:

▶ Address of global memory where memory is swapped is resolved by compiler.
▶ Stores are cached in L1 memory.

Spilling could hurt performance:

▶ Increases memory traffic
▶ Increases instruction count

But it is not always bad:

▶ If accesses are cached
▶ If your code is not instruction-throughput limited

Daniel Cámpora 2023 18

Register spilling (2)

Developers have no control over the spilling process:

▶ Address of global memory where memory is swapped is resolved by compiler.
▶ Stores are cached in L1 memory.

Spilling could hurt performance:

▶ Increases memory traffic
▶ Increases instruction count

But it is not always bad:

▶ If accesses are cached
▶ If your code is not instruction-throughput limited

Daniel Cámpora 2023 19

How to deal with register spilling

One can evaluate the impact of register spilling through profiling.

The developer has several tools to impact register spilling:

▶ Increase globally the amount of registers per kernel.
▶ Increate the amount of configurable L1 cache.
▶ Some compilers allow to specify non-caching loads for global memory.
▶ __launch_bounds__ (HIP, CUDA) – Controls maximum threads per block and minimum blocks per

SM. These two impact the number of registers in a kernel.

Daniel Cámpora 2023 20

Write single-source kernels

It is possible to organize the code with several header files, containing definitions, and source files, con-
taining implementations.

However, doing so in GPU code heavily affects performance. The reason is that the compiler optimizes
functions to use a number of registers, shared memory and threads, and it cannot perform that optimization
if the compilation unit cannot see all code involved.

In other words, if your __global__ function calls __device__ functions either free standing or within
structs, those should be defined in either:

▶ The same source file.
▶ A header file, either templated or inlined.

Daniel Cámpora 2023 21

A practical use-case: The Velo Pixel subdetector of LHCb

0

1

2

3

4

5

6

Sp
ee

du
p

(ti
m

es
)

04-2018
07-2018

11-2018
02-2019

05-2019
08-2019

12-2019
03-2020

0

100

200

300

400

500

600

VE
LO

 se
qu

en
ce

 th
ro

ug
hp

ut
 (k

Hz
)

VELO Search by triplet performance evolution (GeForce RTX 2080 Ti)

16-02
2018

Modernize Search by triplet implementation.
Phi search implemented.
Fastmath enabled.

17-04
2018

Full VELO pipeline on GPU (decoding, clustering and tracking).
Use shared memory in sorting algorithm.

23-04
2018

Compiler setting maxrregcount set to 64.
Stored VELO hits as 16-bit integers.
Optimized GPU prefix sum.
Always consolidate tracks.
Better default kernel call parameters.

09-07
2018

Separate Fill candidates and Weak tracks adder kernels.
Use binary search in Fill candidates and in Forward search.
Version employed for IPDPS paper.

24-09
2018 Use a three-hit class for tracklets.
29-10
2018 Implemented GEC.

27-04
2019

Use simplified scatter function dx dx + dy dy.
Implemented CPU prefix sum.

17-05
2019

Removed maxrregcount setting.
Version employed for review (June, 2019).

10-02
2020 Move to configuration framework.

05-03
2020

Use half to store VELO hit coordinates.
Use AOS for VELO hit coordinates.
Version employed for TDR (April, 2020).

23-03
2020 Move sources of each compilation unit to single files.

01-04
2020

Adopt pendulum search for initial doublet.
Remove Fill candidates.
Use binary search in seeding.
Improvements to decoding.

09-04
2020

Use module pairs instead of single modules.
Store hit phi in 16-bit integer.
Use wrap-around search.

01-05
2020

Tune default number of threads to 64.
Set default properties according to parameter scan.

Daniel Cámpora 2023 22

Table of Contents

Good practices

Other standards: OpenCL, HIP, SYCL

Middleware libraries: Alpaka, Kokkos

Parallel design patterns

Summary

Resources

Daniel Cámpora 2023 23

OpenCL

OpenCL™ (Open Computing Language) is a multi-vendor open standard for general-purpose parallel pro-
gramming of heterogeneous systems that include CPUs, GPUs, and other devices.

OpenCL 3.0 was released in September 2020:

▶ It has increased the flexibility by making every functionality from OpenCL 1.2 onwards optional and
queryable.

▶ C++ for OpenCL adopts C++17.
▶ Unified specification.

Daniel Cámpora 2023 24

OpenCL compilation

OpenCL can either be compiled offline or online:

▶ Offline compilation: Kernel is pre-built with an OpenCL compiler. Pro: It runs with low invocation
latency. Con: It is compiled for a specific architecture.

▶ Online compilation: Kernel source code is distributed instead. Pro: It can run on various
architectures. Con: It needs to be JIT-compiled.

Offline compilation is supported through the clang compiler:

Daniel Cámpora 2023 25

https://clang.llvm.org/docs/OpenCLSupport.html

C++ for OpenCL

C++17 support has arrived with the new C++ for OpenCL. The current C++ support has some caveats:

You can try yourself with godbolt.

Daniel Cámpora 2023 26

https://godbolt.org/z/8sMa4xbev

Status of OpenCL as of 2021

▶ OpenCL is perhaps staying relevant after all these years.
▶ It has gained back an implementation by NVIDIA.
▶ At the same time, Apple stopped supporting OpenCL (in favor of Metal) and so did AMD (in favor of

ROCm).

For more information on OpenCL check out:

▶ Khronos website on OpenCL
▶ IWOCL 2021 presentation

Daniel Cámpora 2023 27

https://developer.nvidia.com/blog/nvidia-is-now-opencl-3-0-conformant/
https://www.khronos.org/opencl/
https://www.iwocl.org/wp-content/uploads/k03-iwocl-syclcon-2021-trevett-updated.mp4.pdf

ROCm

AMD ROCm is the first open-source software development platform for HPC/Hyperscale-class GPU com-
puting.

ROCm is a platform that has appeared in recent years and is quickly evolving and adapting. It includes:

▶ Frameworks (Tensorflow / Pytorch).
▶ Libraries (MIOpen / Blas / RCCL).
▶ Programming model (HIP).
▶ Inter-connect (OCD).

Daniel Cámpora 2023 28

HIP

HIP is a high performance, CUDA-like programming model that is built on an open and portable framework.

HIP has several advantages:

▶ It supports C++17.
▶ It is almost a 1:1 copy of CUDA – most of the time changes required are very minimal and

non-intrusive.
▶ It supports AMD and NVIDIA targets.

Daniel Cámpora 2023 29

HIP == CUDA?

▶ Library call prefix is hip instead of cuda.
▶ Warp size depends on GPU: 64 on AMD and 32 on NVIDIA.
▶ Profiling / debugging is in its infancy.
▶ No support for latest consumer cards (yet?).
▶ Low-level calls are different, later CUDA syntax developments are (will always be?) ahead of HIP.
▶ Specialized hardware (tensor cores, ray tracing) is naturally not there.

It has great potential, especially as more libraries get translated to HIP. For more information:

▶ ROCm docs

Daniel Cámpora 2023 30

https://rocmdocs.amd.com/en/latest/

SYCL

SYCL 2020’s primary goal is to achieve closer convergence with ISO C++, furthering our work to bring
parallel heterogeneous programming to modern C++ through open standards.

▶ It supports C++17, its intent is to become part of the standard.
▶ It attempts to support everything (CPUs, AMD GPUs, NVIDIA GPUs, Intel GPUs, Intel FPGAs).
▶ SYCL is built on top of OpenCL and SPIR-V (the low-level representation shared by eg. Vulkan or

OpenGL).

Daniel Cámpora 2023 31

From the creators of...

It is another standard developed by the Khronos group (same as OpenCL).

Daniel Cámpora 2023 32

SYCL to everything

Daniel Cámpora 2023 33

Status of SYCL

SYCL recently released the SYCL 2020 specification.

▶ Intel supports SYCL as a first-class citizen through its release of OneAPI.
▶ Intel GPUs are coming.

▶ Syntax is not easily translatable from CUDA / HIP. Adapting requires work.
▶ There is no one-size-fits-all and there will never be.
▶ Given that CUDA is a low-level language, adapting to a higher level one may not be in your best

interest if performance is your goal.

In spite of all that SYCL looks very interesting, the next few years will determine whether the language has
wide adoption.

Daniel Cámpora 2023 34

https://www.khronos.org/news/press/khronos-releases-sycl-2020-final-specification
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html
https://www.tomshardware.com/news/intel-dg2-desktop-lineup-detailed-rumor
https://nazavode.github.io/blog/sycl/
https://www.youtube.com/watch?v=KHa-OSrZPGo

Table of Contents

Good practices

Other standards: OpenCL, HIP, SYCL

Middleware libraries: Alpaka, Kokkos

Parallel design patterns

Summary

Resources

Daniel Cámpora 2023 35

Alpaka

The alpaka library is a header-only C++14 abstraction library for accelerator development.

▶ It acts as a middle layer that can target CPU, NVIDIA GPUs or AMD GPUs through a variety of
backends.

▶ C++-style API which is optimized away by the compiler.

Daniel Cámpora 2023 36

Alpaka backends

Daniel Cámpora 2023 37

Alpaka hello world kernel

1 #include <alpaka/alpaka.hpp >
2 //! Prints "[x, y, z][gtid] Hello World" where tid is the global thread number.
3 struct HelloWorldKernel
4 {
5 template <typename TAcc >
6 ALPAKA_FN_ACC auto operator ()(TAcc const& acc) const -> void
7 {
8 using Dim = alpaka ::Dim <TAcc >;
9 using Idx = alpaka ::Idx <TAcc >;

10 using Vec = alpaka ::Vec <Dim , Idx >;
11 using Vec1 = alpaka ::Vec <alpaka ::DimInt <1u>, Idx >;
12
13 Vec const globalThreadIdx = alpaka ::getIdx <alpaka ::Grid , alpaka ::Threads >(acc);
14 Vec const globalThreadExtent = alpaka ::getWorkDiv <alpaka ::Grid , alpaka ::Threads >(acc);
15 Vec1 const linearizedGlobalThreadIdx = alpaka ::mapIdx <1u>(globalThreadIdx , globalThreadExtent);
16
17 printf(
18 "[z:%u,␣y:%u,␣x:%u][linear :%u]␣Hello␣World\n",
19 static_cast <unsigned >(globalThreadIdx [0u]),
20 static_cast <unsigned >(globalThreadIdx [1u]),
21 static_cast <unsigned >(globalThreadIdx [2u]),
22 static_cast <unsigned >(linearizedGlobalThreadIdx [0u]));
23 }
24 };

Listing: Alpaka Hello World.

Daniel Cámpora 2023 38

Should you use Alpaka?

It depends on the priorities of your project:

▶ It provides portability across different platforms.
▶ Easier to maintain.

▶ There is a delay between appeareance of new features and Alpaka support.
▶ It remains a thin library, but doesn’t give you the same control and flexibility as a low-level language

(CUDA, HIP).
▶ Requires learning a different language extension which is not so widely adopted and departs from

others (learning curve).

Materials on Alpaka:

▶ Repository, documentation.
▶ Online tutorial.

Daniel Cámpora 2023 39

https://github.com/alpaka-group/alpaka
https://alpaka.readthedocs.io/en/latest/basic/intro.html
https://indico.cern.ch/event/912156/

Kokkos

Kokkos Core implements a programming model in C++ for writing performance portable applications tar-
geting all major HPC platforms.

▶ Very similar to Alpaka, also a header-only library.
▶ C++ Middle layer that targets CPU, NVIDIA, AMD platforms.

Daniel Cámpora 2023 40

Kokkos Core Capabilities

Daniel Cámpora 2023 41

Kokkos reduction kernel

1 struct squaresum {
2 using value_type = int;
3 KOKKOS_INLINE_FUNCTION
4 void operator ()(const int i, int& lsum) const {
5 lsum += i * i; // compute the sum of squares
6 }
7 };
8
9 int n = 10, sum = 0;

10 Kokkos :: parallel_reduce(n, squaresum (), sum);

Listing: Kokkos reduction kernel.

Daniel Cámpora 2023 42

Should you use Kokkos?

▶ It provides portability and maintainability.
▶ It provides some higher level functionality (eg. parallel_reduction, execution policies).

▶ Documentation is scarce, learning curve.
▶ It provides a subset of low-level functionality of vendor-driven languages (CUDA, HIP, SYCL).

Materials on Kokkos:

▶ Repository.
▶ GTC presentation, video.

Daniel Cámpora 2023 43

https://github.com/kokkos/kokkos
https://on-demand.gputechconf.com/gtc/2015/presentation/S5166-H-Carter-Edwards.pdf
http://on-demand.gputechconf.com/gtc/2015/video/S5166.html

Bonus: Portability in CUDA / HIP?

▶ CUDA and HIP are very similar standards.
▶ Kernel language is practically the same for most use-cases.
▶ For hardware-specific optimizations (eg. tensor cores), you would have to implement a portable

version by hand for portability.

▶ Utility functions (memcpy, memset, malloc, kernel invocation...) can be defined with macros or a
hand-made middle language.

▶ In practice, making your own middleware just for utility functions is very little work.

▶ It is therefore possible to have one codebase with a low-maintainance self-developed wrapper just
covering your utility / kernel needs.

▶ If targeting performance, it is always better to use the native solution.
▶ What about CPU execution?

Daniel Cámpora 2023 44

Bonus: CUDA / HIP running on CPU?

If the CUDA code satisfies that it produces the same result when invoked with a block dimension of {1,
1, 1} – or in other words:

▶ for-loops over threads are block-dimension strided.
▶ if-statements for a single thread refer to threads of index 0.

Then, with some macros and function definitions it is possible to compile the code for CPUs.

See the following presentation for details.

Daniel Cámpora 2023 45

https://indico.cern.ch/event/962110/contributions/4047365/attachments/2141233/3607966/dcampora_dovombru_acc_forum.pdf

So, standard or middleware?

▶ Standards offer the best performance for their native platform.
▶ Middlewares offer portability.

▶ It is possible to obtain good performance on a middleware.
▶ Low-level functions not supported by the middleware will require your own implementation across

vendors (high effort).

▶ It is possible to achieve portability between CUDA / HIP / CPU.
▶ You may want to focus on a single CPU backend if you do this (as opposed to the many variants

offered by Alpaka for instance).
▶ You will maintain the portability layer.

What is your application’s main target?

Daniel Cámpora 2023 46

Table of Contents

Good practices

Other standards: OpenCL, HIP, SYCL

Middleware libraries: Alpaka, Kokkos

Parallel design patterns

Summary

Resources

Daniel Cámpora 2023 47

Data parallel vs streaming patterns

Data parallel patterns
▶ Map
▶ Farm
▶ Reduction
▶ Stencil

Streaming patterns
▶ Farm
▶ Pipeline

Daniel Cámpora 2023 48

Data parallel vs streaming parallel patterns

▶ Size of the input + dependencies between items define which pattern to use.
▶ Data parallel patterns may not be efficient in streaming scenarios, and the other way around.
▶ For streaming patterns, there is usually one (or more) input items that distributes the input elements

to working items as they come.

Daniel Cámpora 2023 49

Map (parallel)

▶ Used on embarrassingly parallel
collections of items.

▶ Same function applied to every item, all at
the same "time".

▶ Applicable if all items are independent.
▶ Usually good candidate for SIMD

abstractions.

Used in

Ray tracing, Monte Carlo simulations.

Daniel Cámpora 2023 50

Stencil (parallel)

▶ When for every item of a collection, we
need data from the neighbourhood items.

▶ Usually a fixed number of neighbourhood
is accessed.

▶ Boundary conditions have to be taken into
account.

▶ Data reuse in the implementation (cache).

Used in

Signal filtering, image processing, grid
methods.

Daniel Cámpora 2023 51

Stencil (parallel)

▶ When for every item of a collection, we
need data from the neighbourhood items.

▶ Usually a fixed number of neighbourhood
is accessed.

▶ Boundary conditions have to be taken into
account.

▶ Data reuse in the implementation (cache).

Used in

Signal filtering, image processing, grid
methods.

Daniel Cámpora 2023 52

Farm (parallel streaming)

▶ Similar to map, but size of collection is not
known in advance.

▶ Used for embarrassingly parallel
computations in stream computations.

▶ There is at least one producer item.

Used in

Used in HEP online trigger software.

Daniel Cámpora 2023 53

Pipeline (streaming)

▶ Size of collection not needed in advance.
▶ Different steps run in parallel, but others

may not be able to run in parallel.
▶ Different functions are applied in different

steps, where the order is important.

Used in

image filtering, signal processing, game
engines.

Daniel Cámpora 2023 54

Pipeline (streaming)

▶ Size of collection not needed in advance.
▶ Different steps run in parallel, but others

may not be able to run in parallel.
▶ Different functions are applied in different

steps, where the order is important.

Used in

image filtering, signal processing, game
engines.

Daniel Cámpora 2023 55

Pipeline (streaming)

▶ Size of collection not needed in advance.
▶ Different steps run in parallel, but others

may not be able to run in parallel.
▶ Different functions are applied in different

steps, where the order is important.

Used in

image filtering, signal processing, game
engines.

Daniel Cámpora 2023 56

Pipeline (streaming)

▶ Size of collection not needed in advance.
▶ Different steps run in parallel, but others

may not be able to run in parallel.
▶ Different functions are applied in different

steps, where the order is important.

Used in

image filtering, signal processing, game
engines.

Daniel Cámpora 2023 57

Pipeline (streaming)

▶ Size of collection not needed in advance.
▶ Different steps run in parallel, but others

may not be able to run in parallel.
▶ Different functions are applied in different

steps, where the order is important.

Used in

image filtering, signal processing, game
engines.

Daniel Cámpora 2023 58

Pipeline (streaming)

▶ Size of collection not needed in advance.
▶ Different steps run in parallel, but others

may not be able to run in parallel.
▶ Different functions are applied in different

steps, where the order is important.

Used in

image filtering, signal processing, game
engines.

Daniel Cámpora 2023 59

Pipeline (streaming)

▶ Size of collection not needed in advance.
▶ Different steps run in parallel, but others

may not be able to run in parallel.
▶ Different functions are applied in different

steps, where the order is important.

Used in

image filtering, signal processing, game
engines.

Daniel Cámpora 2023 60

Pipeline (streaming)

▶ Size of collection not needed in advance.
▶ Different steps run in parallel, but others

may not be able to run in parallel.
▶ Different functions are applied in different

steps, where the order is important.

Used in

image filtering, signal processing, game
engines.

Daniel Cámpora 2023 61

Reduction (sequential)

▶ Combines a collection of items into one,
with a defined operation.

▶ Many different partition options.
▶ Elements depend on each other, but are

associative.

Used in

Matrix operations, computing of statistics on
datasets.

Figure: Sequential reduction

Daniel Cámpora 2023 62

Reduction (parallel)

▶ Combines a collection of items into one,
with a defined operation.

▶ Many different partition options.
▶ Elements depend on each other, but are

associative.

Used in

Matrix operations, computing of statistics on
datasets.

Figure: Parallel reduction

Daniel Cámpora 2023 63

Prefix sum example

The prefix sum is a problem that consists in calculating the accumulated sum at every element of an array.
For example:

▶ Number of tracks per event: [10, 15, 32, 45, 24]
▶ Prefix sum: A = [0, 10, 25, 57, 102, 126]

The prefix sum of an array of numbers is extremely useful. It provides:

▶ The accumulated sum of the entire array (last element).
▶ The offset of each element (on element A[i]).
▶ The size of each element (A[i + 1]− A[i]).

Daniel Cámpora 2023 64

Efficient GPU prefix sum: Blelloch scan

The Blelloch scan consists in performing two sweeps of the data.

▶ up-sweep – the tree is traversed from leaves to root computing partial sums.

This is actually a reduction!

Daniel Cámpora 2023 65

https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda

Efficient GPU prefix sum: Blelloch scan (2)

▶ up-sweep – the tree is traversed from leaves to root computing partial sums.
▶ down-sweep – the tree is traversed from root to leaves. Each node of the current level passes its

value to the element on the left, and the sum of the former and current value on the right.

Daniel Cámpora 2023 66

LHCb HLT1

The prefix sum is an essential tool of the LHCb HLT1 reconstruction.

VELO esti-
mate input size

Prefix sum
VELO clusters

VELO mask
clustering

VELO decoding
and clustering

UT calculate
number of hits

Prefix sum
UT hits

UT pre decode

UT find permutation

UT decode raw
banks in order

UT decoding

SciFi calculate
cluster count v4

Prefix sum SciFi hits

SciFi pre decode v4

SciFi raw bank
decoder v4

SciFi direct
decoder v4

SciFi decoding

Muon pre decoding

Prefix sum muon
pre decoding

Muon sort station
region quarter

Muon add coords
crossing maps

Prefix sum muon
station ocurrence

Muon sort by station

Muon decodingMuon decoding

Figure: Decoding sequences detail.

Daniel Cámpora 2023 67

Table of Contents

Good practices

Other standards: OpenCL, HIP, SYCL

Middleware libraries: Alpaka, Kokkos

Parallel design patterns

Summary

Resources

Daniel Cámpora 2023 68

Summary

▶ Precision affects performance, especially in GPUs.
▶ GPUs implement IEEE754 standard, deviations are to be expected from compiler / architecture

variability.
▶ Be mindful about register spilling.
▶ Prefer single-source kernels.

▶ Choose your standard wisely if targeting best performance.
▶ Consider middlewares if targeting portability.
▶ It is possible to obtain portability with a standard, and to obtain performance with a middleware.

▶ Design patterns are a powerful high-level design tool.
▶ Know your patterns, design algorithms better.

Daniel Cámpora 2023 69

Table of Contents

Good practices

Other standards: OpenCL, HIP, SYCL

Middleware libraries: Alpaka, Kokkos

Parallel design patterns

Summary

Resources

Daniel Cámpora 2023 70

Resources used in the talk

▶ GPU Teaching Kit on Accelerated Computing
▶ Local Memory and Register Spilling by Paulius Micikevicius
▶ Precision and Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs, white paper
▶ From sequential to parallel programming with patterns by Placido Fernandez

Daniel Cámpora 2023 71

	Good practices
	Other standards: OpenCL, HIP, SYCL
	Middleware libraries: Alpaka, Kokkos
	Parallel design patterns
	Summary
	Resources

