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Price to pay for memory

As you already know, memory is a key item to consider when optimizing a program
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Data locality

▶ Space locality – Neihbouring memory locations are likely going to be accessed.
▶ Temporal locality – The same memory location is likely going to be accessed again.
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Accessing x0 will load into cache all x elements.

DRAM is read into cache memory – Each read brings a group of items onto cache memory.
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DRAM burst sections

0 1 2 3

Burst section
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Burst section

In fact, DRAM is organized in burst sections. Let’s take a simplified example:

▶ Each cell represents a byte
▶ We have a 16-byte address space, with 4-byte burst sections

Note that nowadays the address spaces are in the GBs, and a typical burst section is 128 bytes.
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Coalesced memory accesses

0 1 2 3

Coalesced loads
t0 t1 t2 t3

4 5 6 7 8 9 10 11

Coalesced loads
t0 t1 t2 t3

12 13 14 15

When threads make a memory request and the request falls under the same burst, the access is coa-
lesced.
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Coalesced memory accesses

0 1 2 3

Uncoalesced loads
t0 t1 t2 t3

4 5 6 7 8 9 10 11

Uncoalesced loads
t0 t1 t2 t3

12 13 14 15

However, if threads request a block of memory and the accesses do not fall under the same burst, the
access is uncoalesced.

Several access patterns can yield this undesired behaviour, which impacts performance.
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Is an access coalesced?

As a general rule, look for the following conditions:

▶ Base address should be a multiple of burst size.
▶ threadIdx should be used as a free term.

1 A[( expression independent of threadIdx) + threadIdx.x]

Listing: Coalesced accesses.
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Quickbit: Linear representation of a matrix

A0,0

A0,1

A0,2

A0,3
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A1,1

A1,2

A1,3

A2,0

A2,1
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A3,3

is actually stored as

A0,0 A0,1 A0,2 A0,3 A1,0 A1,1 A1,2 A1,3 A2,0 A2,1 A2,2 A2,3 A3,0 A3,1 A3,2 A3,3

Tip: Always store higher order arrays as 1-dimensional arrays!
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Matrix-matrix multiplication

Suppose we want to multiply two arrays:

▶ A of size m × n
▶ B of size n × k
▶ Result is C of size m × k

1 __device__ void multiply_arrays(float* A, float* B, float* C, int m, int n, int k) {
2 for (int row = threadIdx.x; row < m; row += blockDim.x) {
3 for (int col = threadIdx.y; col < k; col += blockDim.y) {
4 float element = 0.f;
5 for (int i = 0; i < n; ++i) {
6 element += A[row * m + i] * B[i * k + col];
7 }
8 C[row * k + col] = element;
9 }

10 }
11 }

Thread 1

Thread 2
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Access patterns

Accesses to B are coalesced:

B0,0 B0,1 B0,2 B0,3

Load iteration 0

t0,0 t0,1 t0,2 t0,3

B1,0 B1,1 B1,2 B1,3

Load iteration 1

t0,0 t0,1 t0,2 t0,3

B2,0 B2,1 B2,2 B2,3 B3,0 B3,1 B3,2 B3,3

however, accesses to A are uncoalesced:

A0,0 A0,1 A0,2 A0,3

Load iteration 0

t0,0 t1,0 t2,0 t3,0

A1,0 A1,1 A1,2 A1,3

Load iteration 1

t0,0 t1,0 t2,0 t3,0

A2,0 A2,1 A2,2 A2,3 A3,0 A3,1 A3,2 A3,3
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A step further: Shared memory

Going back to the types of memories available in a GPU:

Shared memory is a low-latency memory that resides on L1 cache.
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How to use shared memory

Shared memory can be defined by using the keyword __shared__.

Any variable declared like this will be accessible by all threads in a block.

1 __global__ void shared_memory_example(float* dev_array) {
2 __shared__ float array [256];
3
4 for (int i = threadIdx.x; i < 256; i += blockDim.x) {
5 array[i] = dev_array[i];
6 }
7
8 __syncthreads ();
9

10 // Now all threads can access array , which is initialized with
11 // the first 256 elements of dev_array.
12 }

Listing: Coalesced accesses.
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Things to consider about shared memory

Shared memory is a scarce resource that should be used carefully.

▶ It is limited in size, the maximum varies depending on the architecture.
▶ It is a limiting resource that is used to determine maximum number of blocks in flight in a Streaming

Multiprocessor (SM).

The amount of memory reserved for L1-cache / shared memory is configurable1.

At the same time, a good use of shared memory can lead to juicy performance gains!

1In CUDA, it can be configured with cudaDeviceSetCacheConfig
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Matrix multiplication with shared memory

With a small enough matrix we could use shared memory:

▶ Preload all elements of A and B onto shared memory.
▶ Perform matrix multiplication reading from shared memory and store the result in C.

Bonus point: We can use coalesced accesses to populate the shared memory buffers!
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Small matrix multiplication example

Load A and B onto shared memory:

A: A0,0 A0,1 A0,2 A0,3

Load iteration 0

t0 t1 t2 t3

A1,0 A1,1 A1,2 A1,3 A2,0 A2,1 A2,2 A2,3 A3,0 A3,1 A3,2 A3,3

shared A: A0,0 A0,1 A0,2 A0,3

shared B:
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Small matrix multiplication example

Load A and B onto shared memory:

A: A0,0 A0,1 A0,2 A0,3 A1,0 A1,1 A1,2 A1,3

Load iteration 1

t0 t1 t2 t3

A2,0 A2,1 A2,2 A2,3 A3,0 A3,1 A3,2 A3,3

shared A: A0,0 A0,1 A0,2 A0,3 A1,0 A1,1 A1,2 A1,3

shared B:
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Small matrix multiplication example

Load A and B onto shared memory:

A: A0,0 A0,1 A0,2 A0,3 A1,0 A1,1 A1,2 A1,3

Load iteration 2

t0 t1 t2 t3

A2,0 A2,1 A2,2 A2,3 A3,0 A3,1 A3,2 A3,3

shared A: A0,0 A0,1 A0,2 A0,3 A1,0 A1,1 A1,2 A1,3 A2,0 A2,1 A2,2 A2,3

shared B:

Daniel Cámpora 2023 20



Small matrix multiplication example

Load A and B onto shared memory:

A: A0,0 A0,1 A0,2 A0,3 A1,0 A1,1 A1,2 A1,3

Load iteration 3

t0 t1 t2 t3

A2,0 A2,1 A2,2 A2,3 A3,0 A3,1 A3,2 A3,3

shared A: A0,0 A0,1 A0,2 A0,3 A1,0 A1,1 A1,2 A1,3 A2,0 A2,1 A2,2 A2,3 A3,0 A3,1 A3,2 A3,3

shared B:
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Small matrix multiplication example

Load A and B onto shared memory:

B: B0,0 B0,1 B0,2 B0,3

Load iteration 4

t0 t1 t2 t3

B1,0 B1,1 B1,2 B1,3 B2,0 B2,1 B2,2 B2,3 B3,0 B3,1 B3,2 B3,3

shared A: A0,0 A0,1 A0,2 A0,3 A1,0 A1,1 A1,2 A1,3 A2,0 A2,1 A2,2 A2,3 A3,0 A3,1 A3,2 A3,3

shared B: B0,0 B0,1 B0,2 B0,3
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Small matrix multiplication example

Load A and B onto shared memory:

B: B0,0 B0,1 B0,2 B0,3 B1,0 B1,1 B1,2 B1,3

Load iteration 5

t0 t1 t2 t3

B2,0 B2,1 B2,2 B2,3 B3,0 B3,1 B3,2 B3,3

shared A: A0,0 A0,1 A0,2 A0,3 A1,0 A1,1 A1,2 A1,3 A2,0 A2,1 A2,2 A2,3 A3,0 A3,1 A3,2 A3,3

shared B: B0,0 B0,1 B0,2 B0,3 B1,0 B1,1 B1,2 B1,3
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Small matrix multiplication example

Load A and B onto shared memory:

B: B0,0 B0,1 B0,2 B0,3 B1,0 B1,1 B1,2 B1,3

Load iteration 6

t0 t1 t2 t3

B2,0 B2,1 B2,2 B2,3 B3,0 B3,1 B3,2 B3,3

shared A: A0,0 A0,1 A0,2 A0,3 A1,0 A1,1 A1,2 A1,3 A2,0 A2,1 A2,2 A2,3 A3,0 A3,1 A3,2 A3,3

shared B: B0,0 B0,1 B0,2 B0,3 B1,0 B1,1 B1,2 B1,3 B2,0 B2,1 B2,2 B2,3
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Small matrix multiplication example

Load A and B onto shared memory:

B: B0,0 B0,1 B0,2 B0,3 B1,0 B1,1 B1,2 B1,3

Load iteration 7

t0 t1 t2 t3

B2,0 B2,1 B2,2 B2,3 B3,0 B3,1 B3,2 B3,3

shared A: A0,0 A0,1 A0,2 A0,3 A1,0 A1,1 A1,2 A1,3 A2,0 A2,1 A2,2 A2,3 A3,0 A3,1 A3,2 A3,3

shared B: B0,0 B0,1 B0,2 B0,3 B1,0 B1,1 B1,2 B1,3 B2,0 B2,1 B2,2 B2,3 B3,0 B3,1 B3,2 B3,3
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Small matrix multiplication example (2)

shared A: A0,0 A0,1 A0,2 A0,3 A1,0 A1,1 A1,2 A1,3 A2,0 A2,1 A2,2 A2,3 A3,0 A3,1 A3,2 A3,3

shared B: B0,0 B0,1 B0,2 B0,3 B1,0 B1,1 B1,2 B1,3 B2,0 B2,1 B2,2 B2,3 B3,0 B3,1 B3,2 B3,3

And finally do the matrix-matrix multiplication from shared memory buffers shared A and shared B, storing
it in C.

1 __global__ void shared_matrix_multiply_16_16(float* A, float* B, float* C) {
2 __shared__ float shared_A [256];
3 __shared__ float shared_B [256];
4
5 // Coalesced loads
6 for (int i = threadIdx.x; i < 256; i += blockDim.x)
7 shared_A[i] = A[i];
8 for (int i = threadIdx.x; i < 256; i += blockDim.x)
9 shared_B[i] = B[i];

10 __syncthreads ();
11
12 // Now shared_A and shared_B are populated and can be used
13 // instead of the original arrays to perform the multiplication
14 multiply_arrays(shared_A , shared_B , C, 16, 16, 16);
15 }
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Tiling

Tiled data processing or just tiling consists in dividing a big chunk of data into many tiles which are
processed one at a time.
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Analogy

The basic concept is similar to carpooling:

▶ Drivers / Passengers – threads accessing memory
▶ Cars – memory access requests
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Schedule is important!

It works well when people have similar schedules

But it goes really wrong otherwise!
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A generic tiling algorithm

Follow the next steps:

▶ Identify an access pattern where threads access global memory in a tiled manner
▶ Load the tile from global into shared memory in a coalesced manner
▶ Synchronize
▶ Have multiple threads access the data from the shared buffer
▶ Synchronize
▶ Move on to the next tile
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Tiled matrix multiplication

Using this technique we can multiply two arrays of any given size by dividing it into tiles.

At every step, we will load the data into shared memory and perform the multiplication.
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Streams

A Stream is a sequence of commands that execute in order.

A Stream can execute various types of commands. For instance,

▶ Kernel invocations
▶ Memory transmissions
▶ Memory (de)allocations
▶ Memsets
▶ Synchronizations
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The default stream

CUDA has a default Stream

Daniel Cámpora 2023 36



The default stream (2)

By default, CUDA kernels run in the default stream
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The default stream (3)

Any instruction run in a stream must complete before the next can be issued
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The default stream (3)

Any instruction run in a stream must complete before the next can be issued
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Non-default streams

Non-default streams can also be created in a CUDA application
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Non-default streams (2)

Commands running on a non-default stream must still complete before the next can be issued
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Non-default streams (3)

However, commands in different, non-default streams can run concurrently
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Non-default streams (3)

However, commands in different, non-default streams can run concurrently
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The default stream is blocking

The default stream is special: it acquires exclusive access preventing other streams from running
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The default stream is blocking

The default stream is special: it acquires exclusive access preventing other streams from running
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Pipelines

If we were to use a single stream to perform all calculations and transfer all data, GPUs would be hopelessly
slow.

Thankfully, GPUs can perform data transmissions while executing kernels.

Given that a GPU is sitting on a PCI-express slot, we can even exploit the full-duplex capability of the link
if we so desire. Typically at least three streams are needed to achieve a full pipeline:

▶ Use SMs to perform some computation
▶ Transfer data host-to-device
▶ Transfer data device-to-host
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Pipeline example

Main memory (host) must be pinned in order for asynchronicity to work

cudaMemcpyAsync can transfer data asynchronously in a non-default stream
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Pipeline example (2)

This allows overlapping memory copies and computation
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Pipeline example (2)

This allows overlapping memory copies and computation
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Pipeline example (2)

This allows overlapping memory copies and computation

Daniel Cámpora 2023 56



Full pipeline

Figure: Source

A fully realized pipeline.
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Streaming Multiprocessor

The processor that performs computations in NVIDIA archi-
tectures is the Streaming Multiprocessor. It consists of

▶ Arithmetic (green)
▶ Load / store (red)
▶ Memory (blue)
▶ Control unit (orange)

There are many SMs on a GPU, current models have up to
80 SMs and thousands of "CUDA cores"
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Recap

Programming model

▶ Kernel: __global__ functions
▶ Blocks: Subdivision of work into groups
▶ Thread: Unit of work

▶ Local variables
▶ Shared memory: Small and fast memory
▶ Global memory: Large and slow memory

Underlying hardware

▶ The CUDA scheduler
▶ Streaming multiprocessors
▶ Warps of 32 threads

▶ Registers
▶ Cache (L1, L2)
▶ DRAM memory
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The warp

The SM creates, manages, schedules, and executes threads in groups of 32 parallel threads called warps

Threads inside a warp:

▶ start at the same program address
▶ have their own program counter (instruction address counter)
▶ have their own register state
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Does warp size matter?

Warp size affects what block size configurations are efficient. It affects occupancy:

Occupancy is the ratio of active warps to maximum supported active warps in a SM.

Example: On a GPU that supports 64 active warps per SM, full occupancy on a SM can be achieved with:

▶ 8 active blocks with 256 threads per block.
▶ 16 active blocks with 128 threads per block.
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Lockstep

Older architectures executed in lockstep, they shared program counter and register state.

However, this assumption is not valid anymore.

Threads can now branch and execute independently.
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What happens with branches?

If you are working on a GPU that runs in lockstep, if there is at least one thread running the branch then
the whole warp will go through the branch.

For this reason, it is commonly said that one should avoid branches when writing GPU code:
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Branchless code

As compilers get smarter and GPUs do not execute in lockstep, it is not the case anymore that one should
avoid branches at any cost. In most cases, branches are ok.

In recent models, threads within a warp are scheduled independently:

▶ Execution of statements can be interleaved.
▶ At one clock cycle, one single same instruction is executed for all threads in a warp (SIMT).
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Are branches relevant?

When branches lead to homogeneous code then it is worth removing the branch. Especially if the code
behind the branch is a hot section and complex for the compiler. In essence:

Avoid long sequences of diverged execution by threads within the same warp.

For instance, given a seed of a particle trajectory, find compatible hits in other sensors:
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Debugging

GPU code can be debugged in a similar way to how CPU code is debugged.

There are several tools that can be used for debugging GPU program’s execution:

▶ cuda-gdb – Command line debugger that is based off the popular gdb. It can be used to debug
CUDA applications, set watchpoints, step into execution of any thread and so on.

▶ NVIDIA Nsight – Nsight is both an extension to Visual Studio and an extension to the Eclipse
environment that adds CUDA support. The Visual Studio version is the better of the two, and it
contains a built-in debugger and profiler. It is fully integrated with the IDE, so breakpoints can be set,
values can be expanded, just like with the CPU debugger.

▶ rocgdb – Command line debugger that supports the ROCm tool suite. It is at the prototype stage but
it is a huge improvement over the previous debugging capabilities of ROCm.
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Profiling

Similarly, for profiling there are various tools to check out:

▶ nsys – Command line profiler that replaces the previous nvprof. It is highly configurable and can
produce analytics that can be analyzed with the visual profiler.

▶ NVIDIA Visual Profiler (nvvp), Nsight Systems, Nsight Compute – These three tools provide
complementary analytics and functionalities to optimize your application. It is also possible to
connect remotely to a server where the application is run, results are collected and presented in the
local profiler instance.

▶ rocprof – The command line profiler of ROCm is in its infancy but provides decent functionality. It
supports generating traces that can be opened with 3rd party tools and visualized eg. in a browser.
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What to look for when profiling

As a general rule, profile your code often and keep track of optimizations you performed.
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What to look for when profiling (2)
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What to look for when profiling (3)
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Perform a guided analysis

nvvp provides a guided analysis that takes a top-bottom approach, zooming into problems and not over-
whelming with too much information.

Daniel Cámpora 2023 73



Perform a guided analysis (1)
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Perform a guided analysis (2)
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Summary

▶ Prefer coalesced memory accesses.
▶ Shared memory is a valuable resource, use it, don’t abuse it.
▶ Tiling is a technique that helps optimize memory performance.

▶ Use streams to optimize GPU usage.
▶ Pipelines with three or more streams yield best results.

▶ Warp size is a hardware detail that affects efficient block sizes.
▶ Avoid branches but don’t go paranoid.
▶ Profile, profile, profile.

We will see some of these concepts in the exercises this afternoon.
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Resources used in the talk

▶ GPU Teaching Kit on Accelerated Computing
▶ NVIDIA Deep Learning Institute materials
▶ Talk on NVIDIA Profiling Tools by Jeff Larkin
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