Performant Programming for GPUs
Thematic CERN School of Computing

Daniel Hugo Campora Pérez
dcampora@cern.ch

2023

Table of Contents

Dealing with memory efficiently

Streams

Under the hood

Debugging and profiling

Summary

Resources

% Maastricht University Daniel Campora

Table of Contents

Dealing with memory efficiently

Daniel Campora

Price to pay for memory

As you already know, memory is a key item to consider when optimizing a program

Grid

100,000 Block (0, 0) Block (1, 0)

10,000 /"Mﬂ
Processor

/ Thread (1, 0) Thread (0, 0)
100

) W flost

L

=

Thread (1,0)

Performance

Thread (0, 0)

Memory

’_‘

1980 1985 1990 1995 2000 2005 2010
Year

% Maastricht

Data locality

» Space locality — Neihbouring memory locations are likely going to be accessed.
» Temporal locality — The same memory location is likely going to be accessed again.

X0 | X1 | Xo | X3 | X4 | X5 | Xo | X7
Yo |Yi|VYe | Y3|Ya|Ys| Ve | Y7
20| 21|20 | 23|24 | 25| Z6 | Z7

Accessing xg will load into cache all x elements.

DRAM is read into cache memory — Each read brings a group of items onto cache memory.

Daniel Campora

DRAM burst sections

Burst section Burst section Burst section Burst section
NS IMEEN - | 1o+ [i2]is]74[5

In fact, DRAM is organized in burst sections. Let’s take a simplified example:

» Each cell represents a byte
» We have a 16-byte address space, with 4-byte burst sections

Note that nowadays the address spaces are in the GBs, and a typical burst section is 128 bytes.

bﬂ Maastricht University Daniel Campora

Coalesced memory accesses

Coalesced loads Coalesced loads
h H b B

L RER
8|9 [10]11[12]13]14]15]

When threads make a memory request and the request falls under the same burst, the access is coa-
lesced.

bﬂ Maastricht University Daniel Campora

Coalesced memory accesses

Uncoalesced loads Uncoalesced loads
) t 7] f3

MR 1111
8|9 [10]11[12]13]14]15]

However, if threads request a block of memory and the accesses do not fall under the same burst, the
access is uncoalesced.

Several access patterns can yield this undesired behaviour, which impacts performance.

bﬂ Maastricht University Daniel Campora

Is an access coalesced?

As a general rule, look for the following conditions:

» Base address should be a multiple of burst size.
» threadIdx should be used as a free term.

1 Al(expression independent of threadIdx) + threadIdx.x]

Listing: Coalesced accesses.

Quickbit: Linear representation of a matrix

A0,0(41,0|42,0 43,0

Ao,1|A11 | A2,1 | A 1

Ag,2|A1,2|A2,2|A3,2

A0,3(41,3|42,3|43,3

is actually stored as

‘AO,O‘AOJ ‘A0,2‘A0,3‘A1,0‘A1,1 ‘41.2‘41,3‘*‘2,0‘*‘2,1 ‘AZ,Z‘AZ,S‘AG,O‘AGJ ‘Aa.z‘Aa.s‘

Tip: Always store higher order arrays as 1-dimensional arrays!

Matrix-matrix multiplication
Suppose we want to multiply two arrays:

» Aofsizemxn
» Bofsizenx k
» Result is C of size m x k

1 __device__ void multiply_arrays(float* A, float* B, float* C, int m, int n, int k) {
2 for (int row = threadIdx.x; row < m; row += blockDim.x) {
3 for (int col = threadIdx.y; col < k; col += blockDim.y) {
4 float element = 0.f;

5 for (imt i = 0; i < nj; ++i) {

6 element += A[row * m + i] * B[i * k + coll;

7

8 Clrow * k + col]l = element;

9 3

10 ¥

M}

Thread 1
Thread 2

bﬂ Maastricht University Daniel Campora

Access patterns

Accesses to B are coalesced:

Load iteration 0 Load iteration 1

0 0,1 f,2 f,3[0,0 f,1 0,2 0,3

_BZ,O‘BZ71 ‘5272

52,3’53,0‘33,1 ‘33,2‘33,3‘

% Maastricht

Access patterns

Accesses to B are coalesced:

Load iteration 0 Load iteration 1

0 0,1 f,2 f,3[0,0 f,1 0,2 0,3

_52,0‘5271

however, accesses to A are uncoalesced:

B> 2(B2,3|B30|B3,1/B3,2|B3,3

Load iteration 1

fo,0 1,0 2,0 13,0

Load iteration 0

0 1,0 20 3,0

_AZ,O‘AZ71 ‘AZ,Z

A2.3143,0(43,1|43,2|43,3

bq Maastricht University Daniel Campora

A step further: Shared memory

Going back to the types of memories available in a GPU:

Grid

Block (0, 0) Block (1, 0)

i | g] e

Thread (0, 0)

Thread (1, 0) Thread (0, 0) Thread (1, 0)

Host

)
-

Shared memory is a low-latency memory that resides on L1 cache.

Daniel Campora

How to use shared memory

Shared memory can be defined by using the keyword __shared__.

Any variable declared like this will be accessible by all threads in a block.

1 __global__ void shared_memory_example(float* dev_array) {
2 __shared__ float array [256];

3

4 for (int i = threadIdx.x; i < 256; i += blockDim.x) {
5 array[i] = dev_array[il;

6 }

7

8 __syncthreads () ;

9

10 // Now all threads can access array, which is initialized with
11 // the first 256 elements of dev_array.

12 ¥

Listing: Coalesced accesses.

% Maastricht University Daniel Céampora

Things to consider about shared memory

Shared memory is a scarce resource that should be used carefully.

» ltis limited in size, the maximum varies depending on the architecture.

» |tis a limiting resource that is used to determine maximum number of blocks in flight in a Streaming
Multiprocessor (SM).

The amount of memory reserved for L1-cache / shared memory is configurable’.

At the same time, a good use of shared memory can lead to juicy performance gains!

Tin CUDA, it can be configured with cudaDeviceSetCacheConfig

Daniel Campora

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities

Matrix multiplication with shared memory

With a small enough matrix we could use shared memory:

» Preload all elements of A and B onto shared memory.
» Perform matrix multiplication reading from shared memory and store the result in C.

Bonus point: We can use coalesced accesses to populate the shared memory buffers!

Daniel Campora

Small matrix multiplication example

Load A and B onto shared memory:

Load iteration 0

h 4 b &

A: _AMO‘A1~1 ‘ALZ‘ALS‘AZ’O‘AZJ ‘AZYZ‘AZYS‘A&O‘ABJ ‘ASYZ‘ASYS‘

shared B: HEEEEEEEEEEEEEEE

bﬂ Maastricht University

Small matrix multiplication example

Load A and B onto shared memory:

Load iteration 1

shared B: HEEEEEEEEEEEEEEE

Small matrix multiplication example

Load A and B onto shared memory:

Load iteration 2

A: ‘AO.O‘AOJ ‘%,2‘*‘0,3‘&,0‘&.1

A1‘2‘A1‘3
Shared A: ‘AO,O‘AOJ ‘AOYZ‘AO‘B‘ALO‘AWJ ‘ALZ‘ALS_:\:\:\:‘

shared B: HEEEEEEEEEEEEEEE

Small matrix multiplication example

Load A and B onto shared memory:

Load iteration 3

A: ‘AO‘O‘AOJ ‘AOYZ‘AOB‘AMO‘AWJ ‘ALZ‘ALS‘AZ’O‘AZJ ‘AZYZ‘AZYS_
shared A: ‘Ao,O‘Ao,w ‘Ao,Z‘AO,a‘ALO‘NJ ‘A1,2‘A1 ,3‘*‘2,0‘*‘2,1 ‘Az,z"“z.s_

shared B: HEEEEEEEEEEEEEEE

% Maastricht

Small matrix multiplication example

Load A and B onto shared memory:

Load iteration 4

Bi,2 ‘51.3 ‘52,0 ‘52,1 ‘52,2‘52,3‘53,0‘53,1 ‘53,2‘33,3‘

shared A: ‘Ao,o ‘Ao,w ‘%,2‘*‘0,3‘41,0‘41.1 ‘A1,2‘A1,3 ‘Az,o ‘A2,1 ‘Az,z ‘Az.s ‘Aa.o ‘A3.1 ‘As,z ‘As,s‘

shared B: B | [[([[[[]]

% Maastricht

Small matrix multiplication example

Load A and B onto shared memory:

Load iteration 5

shared A: ‘Ao,o ‘Ao,w ‘%,2‘*‘0,3‘41.0‘*‘1,1 ‘A1,2‘A1 3 ‘Az,o ‘A2,1 ‘Az,z ‘Az.s ‘Aa.o ‘A3,1 ‘Aa,z ‘Aa,s‘

shared B: HEEREEE

% Maastricht

Small matrix multiplication example

Load A and B onto shared memory:

Load iteration 6

B: ‘BO‘O‘BOJ‘BOYZ‘BOB‘BMO‘EWJ‘51‘2‘51‘3

shared A: ‘Ao,o ‘Ao,w ‘%,2‘*‘0,3‘41.0‘*‘1,1 ‘A1,2‘A1 3 ‘Az,o ‘A2,1 ‘Az,z ‘Az.s ‘Aa.o ‘A3,1 ‘Aa,z ‘Aa,s‘

il ‘51’2‘5113_:\:\:\1

B1,0

shared B: ‘30,0‘50,1 ‘Bo,z‘Bo,s

% Maastricht

Small matrix multiplication example

Load A and B onto shared memory:

Load iteration 7

B: ‘50.0‘50,1 ‘50,2‘50,3‘51,0‘51.1

B2 ‘51‘3 ‘BZ,O ‘82’1 ‘52,2 ‘ %23 _

shared A: ‘Ao,o ‘Ao,w ‘%,2‘*‘0,3‘41,0‘41.1 ‘A1,2‘A1,3 ‘Az,o ‘A2,1 ‘Az,z ‘Az.s ‘Aa.o ‘A3.1 ‘As,z ‘As,s‘

shared B: ‘50,0‘50,1 ‘50,2‘50,3‘51,0‘51,1 ‘31 72‘31 ,3‘32,0‘52,1 ‘32,2‘32,3_

Dq Maastricht University Daniel Campora

Small matrix multiplication example (2)

shared A: ‘AO,O‘AO,W ‘%,2‘*‘0.3‘41,0‘41,1 ‘A1,2‘A1,3‘A2,0‘A2,1 ‘Az,z"“z,s“‘a.o‘%A ‘Aa,z‘As,s‘

shared B: ‘90,0‘50,1 ‘50,2‘50,3‘51,0‘51,1 ‘51,2‘51,3 ‘52,0 ‘52,1 ‘52,2 ‘52,3 ‘53,0 ‘53,1 ‘53,2 ‘53‘3‘

And finally do the matrix-matrix multiplication from shared memory buffers shared A and shared B, storing
itin C.

__global__ void shared_matrix_multiply_16_16(float* A, float* B, floatx C) {
__shared__ float shared_A [256];
__shared__ float shared_B [256];

for (int i = threadIdx.x; i < 256; i += blockDim.x)
shared_A[i]l = A[i];

1

2

3

4

5 // Coalesced loads

6

7

8 for (int i = threadIdx.x; i < 256; i += blockDim.x)

9 shared_B[i] = B[il;

10 __syncthreads () ;

11

12 // Now shared_A and shared_B are populated and can be used

13 // instead of the original arrays to perform the multiplication
14 multiply_arrays (shared_A, shared B, C, 16, 16, 16);

15)

Maastricht University Daniel Campora

Tiling

Tiled data processing or just tiling consists in dividing a big chunk of data into many tiles which are
processed one at a time.

Global Memory

Dq Maastricht University Daniel Campora

Tiling

Tiled data processing or just tiling consists in dividing a big chunk of data into many tiles which are
processed one at a time.

Global Memory

Thread 1 Thread 2

Dq Maastricht University Daniel Campora

Tiling

Tiled data processing or just tiling consists in dividing a big chunk of data into many tiles which are
processed one at a time.

Global Memory

On-chip Memory

Thread 1 Thread 2

Dq Maastricht University Daniel Campora

Analogy

The basic concept is similar to carpooling:

» Drivers / Passengers — threads accessing memory

» Cars — memory access requests

Schedule is important!

It works well when people have similar schedules

Worker A sleep work
Time
Worker B sleep work

But it goes really wrong otherwise!

Worker A party sleep
Time
Worker B sleep work

iel Campora

dinner

dinner

work

dinner

A generic tiling algorithm

Follow the next steps:

Identify an access pattern where threads access global memory in a tiled manner
Load the tile from global into shared memory in a coalesced manner
Synchronize

Have multiple threads access the data from the shared buffer

Synchronize

vVvyYvyVvyVyvyy

Move on to the next tile

% Maastricht University Daniel Campora

Tiled matrix multiplication

Using this technique we can multiply two arrays of any given size by dividing it into tiles.

At every step, we will load the data into shared memory and perform the multiplication.

B.height

BLOCK_SIZE BLOCK_SIZE

Aheight

BLOCK_SIZE

—
BLOCK_SIZE BLOCK_SIZE BLOCK_SIZE
A.width B.width

Daniel Campora

Table of Contents

Streams

Daniel Campora

Streams

A Stream is a sequence of commands that execute in order.

A Stream can execute various types of commands. For instance,

Kernel invocations
Memory transmissions

>
>
» Memory (de)allocations
> Memsets

>

Synchronizations

The default stream

DEFAULT STREAM

Time

v

CUDA has a default Stream

P Maastricht University Daniel Campora

The default stream (2)

DEFAULT STREAM

kernel 1

v

By default, CUDA kernels run in the default stream

% Maastricht University Daniel Céampora

The default stream (3)

DEFAULT STREAM

kernel 1 kernel 2

v

Time

Any instruction run in a stream must complete before the next can be issued

Daniel Campora

The default stream (3)

DEFAULT STREAM.
kernel 1 | ‘ kernel 2 | ‘ kernel 3 | ‘ kernel 4 ‘ ‘ kernel 5

Time

Any instruction run in a stream must complete before the next can be issued

Non-default streams

NON-DEFAULT STREAM 2

NON-DEFAULT STREAM 1

DEFAULT STREAM

v

Time

Non-default streams can also be created in a CUDA application

Non-default streams (2)

NON-DEFAULT STREAM 2

NON-DEFAULT STREAM 1

DEFAULT STREAM

v

Time

Commands running on a non-default stream must still complete before the next can be issued

Non-default streams (3)

NON-DEFAULT STREAM 2

NON-DEFAULT STREAM 1

DEFAULT STREAM

Time

However, commands in different, non-default streams can run concurrently

v

Non-default streams (3)

NON-DEFAULT STREAM 2

kernel 3 kernel 4 kernel 5

NON-DEFAULT STREAM 1
[kernel 1 | ‘ kernel 2 | ‘ kernel 6 |

DEFAULT STREAM

Time

However, commands in different, non-default streams can run concurrently

v

The default stream is blocking

NON-DEFAULT STREAM 2

NON-DEFAULT STREAM 1

DEFAULT STREAM

v

Time

The default stream is special: it acquires exclusive access preventing other streams from running

The default stream is blocking

NONIDEFAULT STREAM 2

NONDEFAULT STREAM 1

TEFAULT STREAM

v

Time

The default stream is special: it acquires exclusive access preventing other streams from running

The default stream is blocking

NONIDEFAULT STREAM 2

NONDEFAULT STREAM 1

TEFAULT STREAM

kernel 5

v

Time

The default stream is special: it acquires exclusive access preventing other streams from running

The default stream is blocking

NONIDEFAULT STREAM 2

NONDEFAULT STREAM 1

TEFAULT STREAM

kernel 5

v

Time

The default stream is special: it acquires exclusive access preventing other streams from running

The default stream is blocking

NONIDEFAULT STREAM 2

NONIDEFAULT STREAM 1
TEFAULT STREAM
kernel 5

v

Time

The default stream is special: it acquires exclusive access preventing other streams from running

The default stream is blocking

NONIDEFAULT STREAM 2

NONIDEFAULT STREAM 1
TEFAULT STREAM
kernel 5

v

Time

The default stream is special: it acquires exclusive access preventing other streams from running

Pipelines

If we were to use a single stream to perform all calculations and transfer all data, GPUs would be hopelessly
slow.

Thankfully, GPUs can perform data transmissions while executing kernels.

Given that a GPU is sitting on a PCl-express slot, we can even exploit the full-duplex capability of the link
if we so desire. Typically at least three streams are needed to achieve a full pipeline:

» Use SMs to perform some computation
» Transfer data host-to-device
» Transfer data device-to-host

% Maastricht University Daniel Campora

Pipeline example

DAT A - - oo

GPU

cudaMallocHost () cudaMemcpyAsync (HtoD)

Time

Main memory (host) must be pinned in order for asynchronicity to work

cudaMemcpyAsync can transfer data asynchronously in a non-default stream

Pipeline example (2)

cudaMallocHost ()

Time

This allows overlapping memory copies and computation

% Maastricht

Pipeline example (2)

0o

cudaMallocHost ()

Time

This allows overlapping memory copies and computation

% Maastricht

Pipeline example (2)

oo

cudaMallocHost ()

Time

This allows overlapping memory copies and computation

% Maastricht

Pipeline example (2)

oo
A]|
0o
DAT A - mm e mm e e e e
(]|
GPU
Time v

This allows overlapping memory copies and computation

Pipeline example (2)

oo
A]|
0o
0o
DAT A - m e mm e e e e e
(]|

GPU

Time v

This allows overlapping memory copies and computation

Full pipeline

Serial Model
Time
Concurrent Model
Stream 1
Stream 2
Stream 3
Stream 4
Time

Figure: Source

A fully realized pipeline.

Dﬂ Maastricht University Daniel Campora

https://leimao.github.io/blog/CUDA-Stream/

Table of Contents

Under the hood

Daniel Campora

Streaming Multiprocessor

The processor that performs computations in NVIDIA archi-
tectures is the Streaming Multiprocessor. It consists of

> Arithmetic (green)
» Load/ store (red)

» Memory (blue)

» Control unit (orange)

There are many SMs on a GPU, current models have up to
80 SMs and thousands of "CUDA cores"

bﬂ Maastricht University Daniel Campora

Recap

Programming model Underlying hardware
> Kernel: __global__ functions » The CUDA scheduler
» Blocks: Subdivision of work into groups » Streaming multiprocessors
» Thread: Unit of work » Warps of 32 threads
» Local variables » Registers
» Shared memory: Small and fast memory » Cache (L1, L2)
» Global memory: Large and slow memory » DRAM memory

% Maastricht University Daniel Campora

The warp

The SM creates, manages, schedules, and executes threads in groups of 32 parallel threads called warps
Threads inside a warp:
» start at the same program address

> have their own program counter (instruction address counter)
» have their own register state

Daniel Campora

Does warp size matter?
Warp size affects what block size configurations are efficient. It affects occupancy:
Occupancy is the ratio of active warps to maximum supported active warps in a SM.

Example: On a GPU that supports 64 active warps per SM, full occupancy on a SM can be achieved with

» 8 active blocks with 256 threads per block.
» 16 active blocks with 128 threads per block.

Varying Block Size)

o 256 512 768 1024
Threads Per Block

% Maastricht University

Daniel Campora

Lockstep

Older architectures executed in lockstep, they shared program counter and register state.
However, this assumption is not valid anymore.

Threads can now branch and execute independently.

Pre-Volta

curte o, (NN RN,

and Stack (5)
32 thread warp

32 thread warp with independent scheduling

https://developer.nvidia.com/blog/inside-volta/

What happens with branches?

If you are working on a GPU that runs in lockstep, if there is at least one thread running the branch then
the whole warp will go through the branch.

For this reason, it is commonly said that one should avoid branches when writing GPU code:
if (threadidx.x < 4) {
A;

X
Y3

v
&
5
g
g
S
8
o

B;
} else {

}
Z;

Time

Daniel Campora

Branchless code

As compilers get smarter and GPUs do not execute in lockstep, it is not the case anymore that one should
avoid branches at any cost. In most cases, branches are ok.

In recent models, threads within a warp are scheduled independently:

» Execution of statements can be interleaved.
> At one clock cycle, one single same instruction is executed for all threads in a warp (SIMT).

X; Y; Z;

B; Z;

if (threadrdx.x < 4) {
A

B;

} else {
X3
Y;

}

Z:

Time

Daniel Campora

Are branches relevant?

When branches lead to homogeneous code then it is worth removing the branch. Especially if the code
behind the branch is a hot section and complex for the compiler. In essence:

Avoid long sequences of diverged execution by threads within the same warp.

For instance, given a seed of a particle trajectory, find compatible hits in other sensors:

| I } } -

Dﬂ Maastricht University Daniel Campora

Table of Contents

Debugging and profiling

% Maastricht University Daniel Campora

Debugging

GPU code can be debugged in a similar way to how CPU code is debugged.

There are several tools that can be used for debugging GPU program’s execution:

» cuda-gdb — Command line debugger that is based off the popular gdb. It can be used to debug
CUDA applications, set watchpoints, step into execution of any thread and so on.

»> NVIDIA Nsight — Nsight is both an extension to Visual Studio and an extension to the Eclipse
environment that adds CUDA support. The Visual Studio version is the better of the two, and it
contains a built-in debugger and profiler. It is fully integrated with the IDE, so breakpoints can be set,
values can be expanded, just like with the CPU debugger.

» rocgdb — Command line debugger that supports the ROCm tool suite. It is at the prototype stage but
it is a huge improvement over the previous debugging capabilities of ROCm.

Dﬂ Maastricht University Daniel Campora

https://rocmdocs.amd.com/en/latest/ROCm_Tools/ROCgdb.html

Profiling

Similarly, for profiling there are various tools to check out:

» nsys — Command line profiler that replaces the previous nvprof. It is highly configurable and can
produce analytics that can be analyzed with the visual profiler.

» NVIDIA Visual Profiler (nvvp), Nsight Systems, Nsight Compute — These three tools provide
complementary analytics and functionalities to optimize your application. It is also possible to
connect remotely to a server where the application is run, results are collected and presented in the
local profiler instance.

» rocprof — The command line profiler of ROCm is in its infancy but provides decent functionality. It
supports generating traces that can be opened with 3rd party tools and visualized eg. in a browser.

Dﬂ Maastricht University Daniel Campora

https://rocmdocs.amd.com/en/latest/ROCm_Tools/ROCm-Tools.html

What to look for when profiling

As a general rule, profile your code often and keep track of optimizations you performed.

ece NVDIA Visal rfier
S-SRI 3 .5
' “vec o cuc nd9n16.12095.mep 33

om sosme a05.1ms a5z aosame aos.4me a0s.5ms aosem w087 w08 gms aos9ms

08 ms 806.1ms

= Process ' (174655)
= Theead 288656
- Runtime APY
- Diver API
- profiing Overhad
101 Tesla V100-5X02-1608
= Context1 (CUDAI
7 MemCoy (H150)
- MemCoy D10H)

= Compute
// Copy data 7nd B to device arrays d_A and d_B
cudaMemcpyta_
cudaMemcpy4e=8; B, bytes, cudaMemcpyHostToDevice);

// Set execution configuration parameters
1 thr_per_blk: number of CUDA threads pi
" blk_in_gri
int thr_per_blk = 256;

int blk_in_grid = ceil(flog

// Launch kernel
add_vectors<<< blk_in_ggi hr_per_blk >>>(d_A, d_B, d_C);
1/ Copy data
cudaMencpy’

o7 device array d_C to host array C
, d_C, bytes, cudaMemcpyDeviceToHost);

bﬂ Maastricht University Daniel Campora

What to look for when profiling (2)

// Copy data from host arrays A and B to device arrays d_A and d_B
cudaMemcpy (d_A, A, bytes, tToDevice) ;

§ *vec_add_cuda.h49n16.12095.nvwvp 3

[oms 805 ms 805.1ms 805.2ms
=] Process “run" (174655)
=) Thread 288656 CUDA API Call
TRt — T R

cudaMencpy (d_B, B, bytes, cudaMemcpyHostToDevice);

/1 Set execution configuration parameters

11 thr_per_blk: number of CUDA threads per grid block
/1 blk_in_grid: number of blocks in grid

int thr_per_blk = 256;

int blk_in_grid = ceil(float(N) / thr_per_blk);

// Launch kernel
add_vectors<<< blk_in_grid, thr_per_blk >>>(d_A, d_B, d_C);

/1 Copy data from device array d_C to host array C
cudaMemcpy (C, d_C, bytes, cudaMemcpyDeviceToHost);

Details about the data transfer

&

Maastricht University

-

* Driver API
g Qverhead
= [0] Tesla V100-S;

= Context 1 (CUDA) Actual Data Transfer

L7 MemCpy (HtoD) Memcpy HtoD (sync]
L MemCpy (DtoH)
[# Compute.
[¥ Streams
= Properties 53 =8

Memcpy HtoD [sync]

Start 805.016 ms (805,015,657...
End 805.245 ms (805,245,32
Duration 229.663 us
Size 4.194 MB
Throughput 18.263 GBJs

ream Default
¥Memory Type

Source Pageable

Destination Device

aniel Campora

What to look for when profiling (3)

§ *vec_add_cuda.n49n16.12095.0wp 3%

Wssem wossem @ssem S0ss7m 60ssems 6os
/1 Copy data from host arrays A and B to device arrays d_A and d_B = Thread 288656
cudaMemcpy(d_A, A, bytes, cudaMemcpyHostToDevice); Runtime AP1 Ly I R
cudaMenmcpy (d_B, B, bytes, cudaMemcpyHostToDevice); < oriver 6L
hesd
/1 set execution configuration parameters = 01TesaV100-5¥02-1608
11 thr_per_blk: number of CUDA threads per grid block N
11 blk_in_grid: number of blocks in grid 'Y MamCoy D)
int thr_per_blk = 256; il
int blk_in_grid = ceil(float(N) ~per_blk); [Coneuk]
// Launch kernel
add_vectors<<< blk_in_grid, thr_per_blk >>>(d_A, d_8, d_C); 3 Properties =0
// Copy data from device array d_C to host array C add_vectors(int*, int*, int*)
cudaMemcpy (C, d_C, bytes, cudaMemcpyDeviceToHost); _ Queved a
Submitted nja
Start 805.571 ms (805,570,598.
End 805.588 ms (805,588,42:
Duration 17.824 us
Stream Default
Grid Size [4096,1,1)
Block Size [256,1,1]
il 7 - Registers/Thread 16
Details about the kernel execution e o8
Launch Type Normal
¥Occupancy
Theoretical 100%
¥ Shared Memory Configuration
Shared Memory Executed (]
Shared Memory Bank Size a8

% Maastricht University Daniel Campora

Perform a guided analysis

nvvp provides a guided analysis that takes a top-bottom approach, zooming into problems and not over-

whelming with too much information.

& NVIDIA Visuzl Profiler

a8l F®

- EErSS

% Maastricht University

Daniel Campora

Perform a guided analysis (1)

© NVIDIA Visual Profiler - o X
Hle | Viev Window Run Help

o L S

& “single_gpu_ f | =g
o o1s 02: 03 04s 0s: 055 07 08: 03: 1e

= Process “run” (176968) ~

(=] Thread 294445
- Openacc

* Drver ant
- Profiling Overhead
=] [0 Tesla V100-5XM2-1668.

= Context 1 (CUDA)
T MemCy (HtoD)
& T MemCpy (DtoH)

T Anolysis £ | 8 GPU Details (Summary) | I CPU Details| 5] OpenACC Detais| (75 OpenP Detais| E] Console I Settings v = O || D properies % -5
< |) Export PDF Report Results

1.CUDA Application Analysis @ LowMemepy/Kernel Overlap [0 =/ 2

time when memcpy is being performed in parallel with kernel is low.

Select or highlight a single interval to see properties

2. Check Overall GPU Usage

& Low Kemel Concurrency [0 ns 2 ms = 0

The analysis results on the right indicate potential
problems in how your application is taking advantage | The percentage of time when two kernels are being executed in parallel is low.
of the GPU's avallable compute and data movement

capabilities. You should examine the information & Low Memepy Throughput [5.775 B/ avg, for memepys accounting for 3.5% of il memepy time |
provided with each result to determine if you can
Take changes ta your application to inerease GPU ‘The memory copies are not fully using the available host to device bandwidth.
utilzation.
Py [0ns/ 30515 ms = 0%]
Examine Individual Kemels] time when two memory copies are being performed in paralel is low.

Youcans

Sl | 4 LowCompute Utilization

= 111%]
The multiprocessors of one or more GPUs are mostly idle
i Compute Utilization
‘The device timeline shows an estimate of the amount of the total compute capacity being used by the kernels ex
i NVLink Analysis
The following NVLink topelogy diagram shows logical NVLink connections between GPUs and CPUs. A logical N v
< >

% Maastricht University Daniel Campora

Perform a guided analysis (2)

© NVIDIA Visual Profiler

View Window Run Help

§ “single_gpu_c

055 02: 0255 03: 0355 045 0455 055
=] Process run” (2129)
(=] Thread 288400
* Runtime APl
 Diiver APL
* Profiling Overhead
(=] [0] Tesla V100-SXM2-16GB.
=] Context 1 (CUDA)
L MemCpy (HtoD)

L7 MemCpy (Dtor) v

[Analysis £ |8 GPU Details (Summary) | B CPU Detals| 73] OpenACC Detais | 5] OpenP Detils| B Console | [Settings

.= 0 |[Beep. 2[= B

=EE o [}, Export PDF Report. Results
a
T n i Occupancy Is Not Limiting Kernel Performance add vectors(int”, int"...|
The kernel's block size, register usage, and shared memory usage allow it to fully utilize all warps on the GPU. More. Queued
2. Performance-Gritical Kernels
Varigble Achieved Theoretical | Device Limit (Grid Size: [4096,1,1] (4096 blocks)Block Size: [256,1 Subrnitted
3. Compute, Bandwidth, Start
P sm
5 End
tistiuction s MemoryVateney) Active Blocks 3 2 Duration
Instruction and memory latency limit the performance ofa A Stream
kernel when the GPU does not have enouigh work to keep Active Warps s o [Grid Size
y. The performance of latengy-limited kernels can often Slock e
be improved by increasing occupancy. Occupancy ctive Threads
mezsure of how many warps the kernel has active on the Active Thread: 2048 2048 Regiters/Thread
U tlte o he maiimum number of vaipssupported by Shored Memory/Bl
U, The arctical occupancy pravides an upper bound Occupancy 2% 00% 100%
e e e e et s Launch Type
occupancy. Warps v Oceupancy
[] Eamine 0]| hresdyBlock 255 1024 Achieved
T Examine Occupancy reads/Bloc Theordtcal
Warps/Block 5 = ~ Shared Memory Cor
Shared Memory
Block Limit 8 2 Shared Memory
[} Show Kernel Profile - PC Sampling Registers
it shous ve el v | Recicters/Thread 5 o556 v ll< >

b Maastricht University Daniel Campora

Table of Contents

Summary

Daniel Campora

Summary

» Prefer coalesced memory accesses.

v

Shared memory is a valuable resource, use it, don’t abuse it.
» Tiling is a technique that helps optimize memory performance.

» Use streams to optimize GPU usage.
» Pipelines with three or more streams yield best results.

» Warp size is a hardware detail that affects efficient block sizes.

v

Avoid branches but don’t go paranoid.
» Profile, profile, profile.

We will see some of these concepts in the exercises this afternoon.

Daniel Campora

Table of Contents

Resources

Daniel Campora

Resources used in the talk

» GPU Teaching Kit on Accelerated Computing
» NVIDIA Deep Learning Institute materials
» Talk on NVIDIA Profiling Tools by Jeff Larkin

% Maastricht University Daniel Campora

	Dealing with memory efficiently
	Streams
	Under the hood
	Debugging and profiling
	Summary
	Resources

