

Programming for GPUs

Part 1

Dorothea vom Bruch
Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

Email: dorothea.vom.bruch@cern.ch

Thematic CERN School of Computing
June 2023

Split, Croatia

mailto:dorothea.vom.bruch@cern.ch

D. vom Bruch 2

Outline

● From SIMD to SIMT
● Thread and memory organization
● Basic building blocks of a GPU program
● Control flow, synchronization and atomics

D. vom Bruch 3

Graphics Programming Unit

http://fragmentbuffer.com/gpu-performance-for-game-artists/

Vertex/index buffers:
Description of image with vertices and their
connection to triangles

Vertex shading
For every vertex: calculate position on screen
based on original position and camera view point

Rasterization
Get per-pixel color values

Pixel shading
For every pixel: get color based on texture
properties (material, light, ...)

Rendering
Write output to render target

D. vom Bruch 4

Graphics Programming Unit

http://fragmentbuffer.com/gpu-performance-for-game-artists/

Vertex/index buffers:
Description of image with vertices and their
connection to triangles

Vertex shading
For every vertex: calculate position on screen
based on original position and camera view point

Rasterization
Get per-pixel color values

Pixel shading
For every pixel: get color based on texture
properties (material, light, ...)

Rendering
Write output to render target

D. vom Bruch 5

GPU requirements

● Graphics pipeline: huge amount of arithmetic on independent data:
• Transforming positions
• Generating pixel colors
• Applying material properties and light situation to every pixel

Hardware needs

● Access memory simultaneously and contiguously

● Bandwidth more important than latency

● Floating point and fixed-function logic

D. vom Bruch 6

General purpose computing with GPUs

From: “Programming Massively Parallel Processors”, D. B. Kirk, W. W. Hwu, 2013, p. 32

Mid 2000s: unified processors for graphics stages
→ Programmable GPU processors could be used for general purpose computing

D. vom Bruch 7

Amdahl’s law

Speedup in latency = 1 / (S + P/N)
• S: sequential part of program
• P: parallel part of program
• N: number of processors

● Parallel part: identical, but independent work
● Consider how much of the problem can actually

be parallelized to decide whether processing it
on a GPU makes sense

D. vom Bruch 8

SISD, MIMD & SIMD

SISD MIMD SIMD

Single Instruction Single Data Multiple Instruction Multiple Data Single Instruction Multiple Data

Uniprocessor machines Multi-core, grid-, cloud-
computing

e.g. vector processors

D. vom Bruch 9

Single Instruction Multiple Threads (SIMT)

SISD MIMD SIMT

Single Instruction Single Data Multiple Instruction Multiple Data Single Instruction Multiple
Threads

Uniprocessor machines Multi-core, grid-, cloud-
computing

GPUs

D. vom Bruch 10

SIMD versus SIMT

SIMD
● Vectorized instructions executed on modern CPU

SIMD cores are executed in lockstep
● No synchronization barrier is needed, as all elements

of the vector finish processing at the same time

SIMT
● Similar to programming a vector processor
● Use threads instead of vectors
● No need to read data into vector register
● GPUs consist of multiple processing elements, each

with multiple SIMT GPU cores
→ not all threads are processed in lockstep

● A synchronization instruction is required on GPUs

D. vom Bruch 11

What is a GPU?

● Several processors are grouped into a “multiprocessor”
● Several multiprocessors make up a GPU

(CUDA terminology)

D. vom Bruch 12

Nvidia Turing architecture

PCIe interface

Streaming
Multiprocessor

NVLink interface

Memory
controller

D. vom Bruch 13

Nvidia Turing: Streaming Multiprocessor

Nvidia Turing GPU architecture

Scheduler

64 Single
precision cores
(FP32)

64 Integer
cores (INT32)

Tensor cores

Ray tracing
cores (RT)

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

D. vom Bruch 14

GPU Programming Environments

● Nvidia’s application programming interface: CUDA

• Only works with Nvidia GPUs
• Very well documented, many tutorials, low entry level

● AMD ROCm (HIP): Open source platform for GPU computing
• Supports both AMD and Nvidia GPUs
• New development → still work in progress, not that many examples / tutorials yet

● OpenCL: Framework for heterogeneous platforms
• CPUs, GPUs, FPGAs, DSPs, etc.
• Maintained by the Khronos group, based on C99 and C++11

● SYCL: Single source C++ heterogeneous programming platform, built on OpenCL
• Will be supported by Intel GPUs

Early days: Problems had to be translated to graphics language via OpenGL
Today: several programming interfaces exist

D. vom Bruch 15

Focus of GPU programming lectures: CUDA

● Widely used in the GPU computing community
● Underlying concepts easily translate to the other programming interfaces
● Lecture by D. Campora will cover other environments
● Very similar to C/C++ code

● CUDA programming guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

D. vom Bruch 16

Parallelization

● Any GPU code we write will be executed on many “threads”
● These threads are organized in a “grid”, where a fixed set of

threads is grouped into one “block”
● Each thread processes the same instructions (kernel), but

on different data
● Up to three dimensions for blocks and threads
● Maximum of 1024 threads / block (check specs of GPU)

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread
(0,0)

Thread
(0,1)

Thread
(M,0)

Thread
(M,1)

Thread
(0,N)

Thread
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

D. vom Bruch 17

Example: Parallelization for LHCb’s HLT1

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread
(0,0)

Thread
(0,1)

Thread
(M,0)

Thread
(M,1)

Thread
(0,N)

Thread
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

Within one block:
intra-event parallelization

Individual events

● GPUs provide two levels of parallelization
● Ideally suited for LHCb’s HLT1
● Assign events to blocks
● Intra-event parallelization: threads within one block
● Every thread processes for example

• Decoding of one detector element

• 3-hit combination in the pattern recognition step

• One track candidate

• One vertex candidate

• ...

D. vom Bruch 18

Assignment to Streaming Multiprocessors

● Execution order of blocks is arbitrary
● Scheduled on Streaming Multiprocessors (SMs) according to resource usage:

memory, registers, thread number limit

Block 0

Kernel grid Device

SM 0 SM 1 SM 2 SM 3

Max. 2048 threads per SM

Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
Limits # blocks per SM

Block 0

Kernel grid Device

SM 0 SM 1 SM 2 SM 3

Max. 2048 threads per SM

Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
Limits # blocks per SM

Software Hardware

D. vom Bruch 19

Assignment to warps

● Threads within a block assigned to one SM are processed in “warps”
● A warp is an entity of 32 threads on Nvidia GPUs
● Recent AMD GPUs use warps of 64 threads
● Warps are the smallest entity on a GPU, i.e. no less than the number of

threads in one warp is processed
● → The block size should be chosen to be at least 32 (64) threads and

ideally a multiple of the warp size
● This ensures that no threads are inherently idle

Device

SM 0 SM 1 SM 2 SM 3

....
.
.

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

.
.
.

.
.
.

.
.
.

...
Thread 0

...

Thread 31

Warp 0

Thread 32

...

Thread 63

Warp 1

Thread 64

...

Thread 96

Warp 2

D. vom Bruch 20

Memory layout

Thread 0

Block 0

Thread 1

Host

Registers Registers

Thread 0

Block 1

Registers Registers

Global Memory

Constant Memory

Texture Cache, L2 Cache

Thread 1

16 GB

 64 kB

fastest,
limited to 65536
registers per block

extremely fast,
highly parallel

high access latency
(400 - 800 cycles),
finite access bandwidth

read only,
short latency

... ...

 O (kB)

98 kB
Shared memory

98 kB
Shared memory

Specs from the
16 GB Tesla V100

D. vom Bruch 21

Memory usage
● Global memory:

• Main memory, accessible from everywhere

• Communication with host

● Constant memory:
• Secondary, can be used to store constants

• Only writeable to from host

● Shared memory:
• Communication among threads within one block

• Copy data from global to shared memory for faster access

• Especially when used by several threads in a block

• Accessible only from one block on the device

● Registers:
• Accessible only from within a single thread

• All variables declared inside a kernel are automatically stored
in registers

• Too many registers can result in performance penalty

Thread 0

Block 0

Thread 1

Host

Registers Registers

Thread 0

Block 1

Registers Registers

Global Memory

Constant Memory

Texture Cache, L2 Cache

Thread 1

16 GB

 64 kB

fastest,
limited to 65536
registers per block

extremely fast,
highly parallel

high access latency
(400 - 800 cycles),
finite access bandwidth

read only,
short latency

... ...

 O (kB)

98 kB
Shared memory

98 kB
Shared memory

D. vom Bruch 22

Memory overview

Name Host access Device access
Global memory Dynamic allocation,

Read / write
No allocation,
Read / write

Constant memory Dynamic allocation,
Read / write

Static allocation,
Read-only

Shared memory Dynamic allocation,
No access

Static allocation,
Read / write access by all

elements of a block

Registers & local memory No allocation,
No access

Static allocation,
Read / write access by a single

thread

D. vom Bruch 23

Configuration considerations

● Within one block:
• Use same shared memory
• Can synchronize all threads in one block

● Threads in different blocks:
• Cannot communicate
• Only through content of global memory

● Grid size:

• > 2 x number of SMs → hide latencies
● Block size:

• Consider number of registers used per thread

→ Number of registers / block is limited

• Optimum: multiple of 32 (warp size) → no inherently idle threads

D. vom Bruch 24

CPU – GPU communication

CUDA has specific variables & functions introduced for
• Identification of GPU code
• Allocation of GPU memory
• Definition of thread grid size
• Options to launch the grid
• …

Kernel: program containing instructions to be executed on
the GPU

Host
● Some CPU code

● Memory allocation (host & device)
…

● Launch grid of kernels
to run on GPU

…
● Some more CPU code

● Memory deallocation (host & device)

Device

Run kernels

D. vom Bruch 25

Calling a function in CUDA

Non blocking function call
Will return to host
immediately

Waits for previously launched
device work to finish

D. vom Bruch 26

Simplest CUDA function

Identifier of function
executed on the GPU

blockIdx and threadIdx are
defined within device code

Can access blockIdx.x,
blockIdx.y, blockIdx.z

If only 1-dimensional block is defined,
blockIdx.y = 0, blockIdx.z = 0

Only method to pass messages to stdout from device code is printf (std::cout does not work)

D. vom Bruch 27

What does the parallelization mean?

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread
(0,0)

Thread
(0,1)

Thread
(M,0)

Thread
(M,1)

Thread
(0,N)

Thread
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

hello_world_kernel
blockIdx.x = 0
threadIdx.x = 0

hello_world_kernel
blockIdx.x = 0
threadIdx.x = 1

hello_world_kernel
blockIdx.x = 0
threadIdx.x = N

...

D. vom Bruch 28

Pre-defined variables available in kernel

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread
(0,0)

Thread
(0,1)

Thread
(M,0)

Thread
(M,1)

Thread
(0,N)

Thread
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

threadIdx.x = N, threadIdx.y = M, threadIdx.z = 0

blockIdx.x = n, blockIdx.y = 0, blockIdx.z = 0

gridDim.x = n+1, gridDim.y = m+1, gridDim.z = 1

blockDim.x = N+1, blockDim.y = N+1, blockDim.z = 1

D. vom Bruch 29

Function declaration

Called from Executed on Comment
__global__ Host Device Defines kernel,

returns void

__device__ Device Device Like any C(++)
function

__host__ Host Host

__device__ __host__ can be combined
useful if same function is executed on host AND device

D. vom Bruch 30

Global memory management

int a_host = 8, b_host = 0;

int *a_dev, *b_dev;

cudaMalloc((void**)&a_dev, sizeof(int));

cudaMalloc((void**)&b_dev, sizeof(int));

cudaMemcpy(a_dev, &a_host, sizeof(int), cudaMemcpyHostToDevice);

cudaMemcpy(b_dev, &b_host, sizeof(int), cudaMemcpyHostToDevice);

DoStuff<<<16,16>>>(a_dev, b_dev);

cudaMemcpy(&b_host, b_dev, sizeof(int), cudaMemcpyDeviceToHost);

cudaDeviceSynchronize();

cudaFree(a_dev);

cudaFree(b_dev);

Pointer to allocated global memory
on device is returned

Size of memory to be allocated

D. vom Bruch 31

Global memory management (continued)

int a_host = 8, b_host = 0;

int *a_dev, *b_dev;

cudaMalloc((void**)&a_dev, sizeof(int));

cudaMalloc((void**)&b_dev, sizeof(int));

cudaMemcpy(a_dev, &a_host, sizeof(int), cudaMemcpyHostToDevice);

cudaMemcpy(b_dev, &b_host, sizeof(int), cudaMemcpyHostToDevice);

DoStuff<<<16,16>>>(a_dev, b_dev);

cudaMemcpy(&b_host, b_dev, sizeof(int), cudaMemcpyDeviceToHost);

cudaDeviceSynchronize();

cudaFree(a_dev);

cudaFree(b_dev);

Pointer to destination
Pointer to source

Size of memory to be
copied (bytes)

Copy direction

D. vom Bruch 32

Global memory management (continued)

int a_host = 8, b_host = 0;

int *a_dev, *b_dev;

cudaMalloc((void**)&a_dev, sizeof(int));

cudaMalloc((void**)&b_dev, sizeof(int));

cudaMemcpy(a_dev, &a_host, sizeof(int), cudaMemcpyHostToDevice);

cudaMemcpy(b_dev, &b_host, sizeof(int), cudaMemcpyHostToDevice);

DoStuff<<<16,16>>>(a_dev, b_dev);

cudaMemcpy(&b_host, b_dev, sizeof(int), cudaMemcpyDeviceToHost);

cudaDeviceSynchronize();

cudaFree(a_dev);

cudaFree(b_dev);

Pointers to global memory variables passed
to kernel

Pointer to global memory to be freed

D. vom Bruch 33

Synchronization: Grid level
● Execution order of blocks on SMs is arbitrary
● If we want to ensure that all work has finished, need a

synchronization method
● Call to CudaDeviceSynchronize() from host waits

until all work launched on the device has finished
• Includes kernel launches (i.e. all instances of

hello_world_kernel in all blocks have
finished)

• Also includes memory copies

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread
(0,0)

Thread
(0,1)

Thread
(M,0)

Thread
(M,1)

Thread
(0,N)

Thread
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

hello_world_kernel
blockIdx.x = 0
threadIdx.x = 0

hello_world_kernel
blockIdx.x = 0
threadIdx.x = 1

hello_world_kernel
blockIdx.x = 0
threadIdx.x = N

...

D. vom Bruch 34

Synchronization: Block level
● Execution order of threads within one block is arbitrary
● Only exception: threads in one warp are processed jointly
● To synchronize threads within one block: Call

__syncthreads() within the kernel code

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread
(0,0)

Thread
(0,1)

Thread
(M,0)

Thread
(M,1)

Thread
(0,N)

Thread
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

hello_world_kernel
blockIdx.x = 0
threadIdx.x = 0

hello_world_kernel
blockIdx.x = 0
threadIdx.x = 1

hello_world_kernel
blockIdx.x = 0
threadIdx.x = N

...

for (int i = threadIdx.x; i < N+1; i++) {
variable[threadIdx.x] = ...

}

__syncthreads();

for (int i = threadIdx.x; i < N+1; i++) {
Use variable[threadIdx.x]

}

D. vom Bruch 35

Static shared memory

● Shared memory is allocated within the kernel
● If the size is known at compile time, it is

declared with that size directly in the kernel
● Call to __syncthreads() is needed if entries

computed with other threads are used

__global__ void my_kernel(float *my_other_result) {
__shared__ float var_sh[N+1];

for (int i = threadIdx.x; i < N+1; i++) {
var_sh[i] = …;

}

__syncthreads();

for (int i = threadIdx.x; i < N+1; i++) {
my_other_result[i] = something with var_sh[i]

}
}

my_kernel<<32,32>>(my_other_result);

D. vom Bruch 36

Dynamic shared memory

● If the size is only known at run time, shared
memory can be allocated dynamically

● The size must be known on the host
● It is passed as additional argument to the

kernel call
● The amount of shared memory per block is the

same for all blocks within one grid

__global__ void my_kernel(float *my_other_result) {
extern __shared__ float var_sh[];

for (int i = threadIdx.x; i < N+1; i++) {
var_sh[i] = …;

}

__syncthreads();

for (int i = threadIdx.x; i < N+1; i++) {
my_other_result[i] = something with var_sh[i]

}
}

my_kernel<<32,32, (N+1)*sizeof(float)>>(my_other_result);

D. vom Bruch 37

Race conditions → atomic operations
● Caution when modifying the same value in memory from different threads:

• Need to read, modify, write value: three operations
• Outcome depends on timing of the different threads
• Thread 1 can modify after thread 2 read a value, but before thread 2 writes a new value!

● Use atomic operations:
• Read-modify-write cannot be interrupted: appears to be one operation
• atomicAdd(), atomicSub(), atomicInc(), atomicDec(), …

● Needed for both shared and global memory

Thread 0 Thread 1 Thread 2

One global / shared memory location

D. vom Bruch 38

Index calculation

● It is often useful to parallelize the processing of one array with both blocks and threads
● Unique index = x + y * size
● int index = threadIdx.x + blockIdx.x * blockDim.x;

0

blockdIdx.x = 1 blockdIdx.x = 2

1 2 3 0 1 2 3 0 1 2 3

D. vom Bruch 39

Compilation

● Use nvcc for compilation:
• Calls nvcc for CUDA parts
• Calls gcc for c++ parts

● nvcc FirstProgram.cu -o executableName

● Also takes C, C++, library, object, shared ojbect... files as input
● Can link libraries, include header files
● Can integrate into larger projects with CMake

D. vom Bruch 40

Resources

● D. B. Kirk, W. w. Hwu: “Programming Massively Parallel Processors”
● J. Sanders, E. Kandrot: “CUDA by Example”
● N. Wilt: “The CUDA Handbook”
● http://docs.nvidia.com/cuda/cuda-c-programming-guide/
● http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4LdAUcCyr
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#axzz4LdAUcCyr

D. vom Bruch 41

Summary

● GPU architecture uses SIMT paradigm: threads process same instruction on independent data
● Parallelization occurs on two levels: blocks and threads
● Assignment of blocks to Streaming Multiprocessors based on resource usage
● Memory hierarchy similar to CPU memory, but explicitly chosen by programmer
● Execution order of threads and blocks is random → synchronization required by programmer
● Few special functions in CUDA to express parallelization, memory type and synchronization
● Pay attention to race conditions when several streams access the same memory location

● Main concept is that of many threads doing work in parallel
● Need to develop algorithm expressing the parallelism
● Coding itself is mainly C / C++

D. vom Bruch 42

Backup

D. vom Bruch 43

SoA vs. AoS

D. vom Bruch 44

Control flow

Image source

● Hide memory copies between host and
device by using several pipelines

● Cuda terminology for pipeline: “stream”

https://leimao.github.io/blog/CUDA-Stream/

D. vom Bruch 45

Synchronization with streams

● If no streams are explicitly defined, the “default” stream is used
● To use several streams as pipelines, need to create them specifically

cudaStream_t streams[num_streams];

for (int i = 0; i < num_streams; i++) {
cudaStreamCreate(&streams[i]);

cudaMalloc(&data_d[i], N * sizeof(float));

my_kernel<<1024,32, 0, streams[i]>>(data_d[i],N);

cudaMemcpyAsync(data_h[i], data_d[i], N * sizeof(float), stream[i]);

}

● cudaDeviceSynchronize() waits for all streams to have finished
● cudaStreamSynchronize(stream[i]) waits only for stream[i] to finish

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

