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Outline

● From SIMD to SIMT
● Thread and memory organization
● Basic building blocks of a GPU program
● Control flow, synchronization and atomics



D. vom Bruch 3

Graphics Programming Unit

http://fragmentbuffer.com/gpu-performance-for-game-artists/

Vertex/index buffers:
Description of image with vertices and their 
connection to triangles

Vertex shading
For every vertex: calculate position on screen 
based on original position and camera view point

Rasterization
Get per-pixel color values 

Pixel shading
For every pixel: get color based on texture 
properties (material, light, ...)

Rendering
Write output to render target
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Graphics Programming Unit

http://fragmentbuffer.com/gpu-performance-for-game-artists/

Vertex/index buffers:
Description of image with vertices and their 
connection to triangles

Vertex shading
For every vertex: calculate position on screen 
based on original position and camera view point

Rasterization
Get per-pixel color values 

Pixel shading
For every pixel: get color based on texture 
properties (material, light, ...)

Rendering
Write output to render target
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GPU requirements

● Graphics pipeline: huge amount of arithmetic on independent data:
• Transforming positions
• Generating pixel colors
• Applying material properties and light situation to every pixel

Hardware needs

● Access memory simultaneously and contiguously

● Bandwidth more important than latency

● Floating point and fixed-function logic 
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General purpose computing with GPUs

From: “Programming Massively Parallel Processors”, D. B. Kirk, W. W. Hwu, 2013, p. 32

Mid 2000s: unified processors for graphics stages 
→ Programmable GPU processors could be used for general purpose computing 
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Amdahl’s law

Speedup in latency = 1 / (S + P/N)
• S: sequential part of program
• P: parallel part of program
• N: number of processors

● Parallel part: identical, but independent work 
● Consider how much of the problem can actually 

be parallelized to decide whether processing it 
on a GPU makes sense
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SISD, MIMD & SIMD

SISD MIMD SIMD

Single Instruction Single Data Multiple Instruction Multiple Data Single Instruction Multiple Data

Uniprocessor machines Multi-core, grid-, cloud-
computing

e.g. vector processors
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Single Instruction Multiple Threads (SIMT)

SISD MIMD SIMT

Single Instruction Single Data Multiple Instruction Multiple Data Single Instruction Multiple 
Threads

Uniprocessor machines Multi-core, grid-, cloud-
computing

GPUs



D. vom Bruch 10

SIMD versus SIMT

SIMD
● Vectorized instructions executed on modern CPU 

SIMD cores are executed in lockstep
● No synchronization barrier is needed, as all elements 

of the vector finish processing at the same time

SIMT
● Similar to programming a vector processor
● Use threads instead of vectors
● No need to read data into vector register
● GPUs consist of multiple processing elements, each 

with multiple SIMT GPU cores
→ not all threads are processed in lockstep

● A synchronization instruction is required on GPUs
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What is a GPU?

● Several processors are grouped into a “multiprocessor”
● Several multiprocessors make up a GPU

(CUDA terminology)



D. vom Bruch 12

Nvidia Turing architecture

PCIe interface

Streaming
Multiprocessor

NVLink interface

Memory 
controller
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Nvidia Turing: Streaming Multiprocessor

Nvidia Turing GPU architecture

Scheduler

64 Single 
precision cores 
(FP32)

64 Integer 
cores (INT32)

Tensor cores

Ray tracing 
cores (RT)

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf


D. vom Bruch 14

GPU Programming Environments

● Nvidia’s application programming interface: CUDA

• Only works with Nvidia GPUs
• Very well documented, many tutorials, low entry level

● AMD ROCm (HIP): Open source platform for GPU computing 
• Supports both AMD and Nvidia GPUs
•  New development → still work in progress, not that many examples / tutorials yet

● OpenCL: Framework for heterogeneous platforms
• CPUs, GPUs, FPGAs, DSPs, etc.
• Maintained by the Khronos group, based on C99 and C++11

● SYCL: Single source C++ heterogeneous programming platform, built on OpenCL
• Will be supported by Intel GPUs

Early days: Problems had to be translated to graphics language via OpenGL
Today: several programming interfaces exist
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Focus of GPU programming lectures: CUDA

● Widely used in the GPU computing community
● Underlying concepts easily translate to the other programming interfaces
● Lecture by D. Campora will cover other environments
● Very similar to C/C++ code

● CUDA programming guide

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
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Parallelization

● Any GPU code we write will be executed on many “threads” 
● These threads are organized in a “grid”, where a fixed set of 

threads is grouped into one “block”
● Each thread processes the same instructions (kernel), but 

on different data
● Up to three dimensions for blocks and threads
● Maximum of 1024 threads / block (check specs of GPU)

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread 
(0,0)

Thread 
(0,1)

Thread 
(M,0)

Thread 
(M,1)

Thread 
(0,N)

Thread 
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...
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Example: Parallelization for LHCb’s HLT1

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread 
(0,0)

Thread 
(0,1)

Thread 
(M,0)

Thread 
(M,1)

Thread 
(0,N)

Thread 
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

Within one block:
intra-event parallelization

Individual events

● GPUs provide two levels of parallelization
● Ideally suited for LHCb’s HLT1
● Assign events to blocks
● Intra-event parallelization: threads within one block
● Every thread processes for example

• Decoding of one detector element

• 3-hit combination in the pattern recognition step

• One track candidate

• One vertex candidate

• ...
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Assignment to Streaming Multiprocessors

● Execution order of blocks is arbitrary
● Scheduled on Streaming Multiprocessors (SMs) according to resource usage: 

memory, registers, thread number limit

Block 0

Kernel grid Device

SM 0 SM 1 SM 2 SM 3

Max. 2048 threads per SM

Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
Limits # blocks per SM

Block 0

Kernel grid Device

SM 0 SM 1 SM 2 SM 3

Max. 2048 threads per SM

Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7
Limits # blocks per SM

Software Hardware



D. vom Bruch 19

Assignment to warps

● Threads within a block assigned to one SM are processed in “warps”
● A warp is an entity of 32 threads on Nvidia GPUs
● Recent AMD GPUs use warps of 64 threads
● Warps are the smallest entity on a GPU, i.e. no less than the number of 

threads in one warp is processed
● → The block size should be chosen to be at  least 32 (64) threads and 

ideally a multiple of the warp size
● This ensures that no threads are inherently idle

Device

SM 0 SM 1 SM 2 SM 3

....
.
.

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

.
.
.

.
.
.

.
.
.

...
Thread 0

...

Thread 31

Warp 0

Thread 32

...

Thread 63

Warp 1

Thread 64

...

Thread 96

Warp 2
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Memory layout

Thread 0

Block 0

Thread 1

Host

Registers Registers

Thread 0

Block 1

Registers Registers

Global Memory

Constant Memory

Texture Cache, L2 Cache

Thread 1

16 GB

  64 kB

fastest, 
limited to 65536  
registers per block 

extremely fast, 
highly parallel

high access latency  
(400 - 800 cycles), 
finite access bandwidth

read only, 
short latency

... ...

  O (kB)

98 kB  
Shared memory

98 kB  
Shared memory

Specs from the 
16 GB Tesla V100 
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Memory usage
● Global memory: 

• Main memory, accessible from everywhere

• Communication with host

● Constant memory: 
• Secondary, can be used to store constants

• Only writeable to from host

● Shared memory: 
• Communication among threads within one block

• Copy data from global to shared memory for faster access

• Especially when used by several threads in a block

• Accessible only from one block on the device

● Registers:
• Accessible only from within a single thread

• All variables declared inside a kernel are automatically stored 
in registers

• Too many registers can result in performance penalty

Thread 0

Block 0

Thread 1

Host

Registers Registers

Thread 0

Block 1

Registers Registers

Global Memory

Constant Memory

Texture Cache, L2 Cache

Thread 1

16 GB

  64 kB

fastest, 
limited to 65536  
registers per block 

extremely fast, 
highly parallel

high access latency  
(400 - 800 cycles), 
finite access bandwidth

read only, 
short latency

... ...

  O (kB)

98 kB  
Shared memory

98 kB  
Shared memory
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Memory overview

Name Host access Device access
Global memory Dynamic allocation,

Read / write
No allocation,
Read / write

Constant memory Dynamic allocation,
Read / write

Static allocation,
Read-only

Shared memory Dynamic allocation,
No access

Static allocation,
Read / write access by all 

elements of a block 

Registers & local memory No allocation,
No access

Static allocation,
Read / write access by a single 

thread



D. vom Bruch 23

Configuration considerations

● Within one block:
• Use same shared memory
• Can synchronize all threads in one block

● Threads in different blocks:
• Cannot communicate
• Only through content of global memory

● Grid size:

• > 2 x number of SMs → hide latencies
● Block size: 

• Consider number of registers used per thread

→ Number of registers / block is limited

• Optimum: multiple of 32 (warp size) → no inherently idle threads
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CPU – GPU communication

CUDA has specific variables & functions introduced for
• Identification of GPU code
• Allocation of GPU memory
• Definition of thread grid size
• Options to launch the grid
• …

Kernel: program containing instructions to be executed on 
the GPU

Host
● Some CPU code

● Memory allocation (host & device) 
…

● Launch grid of kernels 
to run on GPU

…
● Some more CPU code

● Memory deallocation (host & device)

Device

Run kernels
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Calling a function in CUDA

Non blocking function call
Will return to host 
immediately

Waits for previously launched 
device work to finish
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Simplest CUDA function

Identifier of function 
executed on the GPU

blockIdx and threadIdx are 
defined within device code

Can access blockIdx.x, 
blockIdx.y, blockIdx.z

If only 1-dimensional block is defined, 
blockIdx.y = 0, blockIdx.z = 0

Only method to pass messages to stdout from device code is printf (std::cout does not work)
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What does the parallelization mean?

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread 
(0,0)

Thread 
(0,1)

Thread 
(M,0)

Thread 
(M,1)

Thread 
(0,N)

Thread 
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

hello_world_kernel
blockIdx.x = 0
threadIdx.x = 0

hello_world_kernel
blockIdx.x = 0
threadIdx.x = 1

hello_world_kernel
blockIdx.x = 0
threadIdx.x = N

...
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Pre-defined variables available in kernel

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread 
(0,0)

Thread 
(0,1)

Thread 
(M,0)

Thread 
(M,1)

Thread 
(0,N)

Thread 
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

threadIdx.x = N, threadIdx.y = M, threadIdx.z = 0

blockIdx.x = n, blockIdx.y = 0, blockIdx.z = 0

gridDim.x = n+1, gridDim.y = m+1, gridDim.z = 1

blockDim.x = N+1, blockDim.y = N+1, blockDim.z = 1
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Function declaration

Called from Executed on Comment
__global__ Host Device Defines kernel, 

returns void

__device__ Device Device Like any C(++) 
function

__host__ Host Host

__device__ __host__ can be combined
useful if same function is executed on host AND device
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Global memory management

int a_host = 8, b_host = 0;

int *a_dev, *b_dev;

cudaMalloc( (void**)&a_dev, sizeof(int) );

cudaMalloc( (void**)&b_dev, sizeof(int) );

cudaMemcpy( a_dev, &a_host, sizeof(int), cudaMemcpyHostToDevice );

cudaMemcpy( b_dev, &b_host, sizeof(int), cudaMemcpyHostToDevice );

DoStuff<<<16,16>>>( a_dev, b_dev );

cudaMemcpy( &b_host, b_dev, sizeof(int), cudaMemcpyDeviceToHost );

cudaDeviceSynchronize();

cudaFree( a_dev);

cudaFree( b_dev);

Pointer to allocated global memory 
on device is returned

Size of memory to be allocated
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Global memory management (continued)

int a_host = 8, b_host = 0;

int *a_dev, *b_dev;

cudaMalloc( (void**)&a_dev, sizeof(int) );

cudaMalloc( (void**)&b_dev, sizeof(int) );

cudaMemcpy( a_dev, &a_host, sizeof(int), cudaMemcpyHostToDevice );

cudaMemcpy( b_dev, &b_host, sizeof(int), cudaMemcpyHostToDevice );

DoStuff<<<16,16>>>( a_dev, b_dev );

cudaMemcpy( &b_host, b_dev, sizeof(int), cudaMemcpyDeviceToHost );

cudaDeviceSynchronize();

cudaFree( a_dev);

cudaFree( b_dev);

Pointer to destination
Pointer to source

Size of memory to be 
copied (bytes)

Copy direction
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Global memory management (continued)

int a_host = 8, b_host = 0;

int *a_dev, *b_dev;

cudaMalloc( (void**)&a_dev, sizeof(int) );

cudaMalloc( (void**)&b_dev, sizeof(int) );

cudaMemcpy( a_dev, &a_host, sizeof(int), cudaMemcpyHostToDevice );

cudaMemcpy( b_dev, &b_host, sizeof(int), cudaMemcpyHostToDevice );

DoStuff<<<16,16>>>( a_dev, b_dev );

cudaMemcpy( &b_host, b_dev, sizeof(int), cudaMemcpyDeviceToHost );

cudaDeviceSynchronize();

cudaFree( a_dev);

cudaFree( b_dev);

Pointers to global memory variables passed 
to kernel

Pointer to global memory to be freed
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Synchronization: Grid level
● Execution order of blocks on SMs is arbitrary
● If we want to ensure that all work has finished, need a 

synchronization method
● Call to CudaDeviceSynchronize() from host waits 

until all work launched on the device has finished
• Includes kernel launches (i.e. all instances of 

hello_world_kernel in all blocks have 
finished)

• Also includes memory copies

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread 
(0,0)

Thread 
(0,1)

Thread 
(M,0)

Thread 
(M,1)

Thread 
(0,N)

Thread 
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

hello_world_kernel
blockIdx.x = 0
threadIdx.x = 0

hello_world_kernel
blockIdx.x = 0
threadIdx.x = 1

hello_world_kernel
blockIdx.x = 0
threadIdx.x = N

...
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Synchronization: Block level
● Execution order of threads within one block is arbitrary
● Only exception: threads in one warp are processed jointly
● To synchronize threads within one block: Call 

__syncthreads() within the kernel code

Block (0,0) Block (0,1) Block (0,n)

Block (1,0) Block (1,1) Block (1,n)

Thread 
(0,0)

Thread 
(0,1)

Thread 
(M,0)

Thread 
(M,1)

Thread 
(0,N)

Thread 
(M,N)

Block (m,0) Block (m,1) Block (m,n)

...

...

......

...

...

...

...

...

...

...

hello_world_kernel
blockIdx.x = 0
threadIdx.x = 0

hello_world_kernel
blockIdx.x = 0
threadIdx.x = 1

hello_world_kernel
blockIdx.x = 0
threadIdx.x = N

...

for (int i = threadIdx.x; i < N+1; i++) {
variable[threadIdx.x] = ...

} 

__syncthreads();

for (int i = threadIdx.x; i < N+1; i++) {
Use variable[threadIdx.x]

} 



D. vom Bruch 35

Static shared memory

● Shared memory is allocated within the kernel
● If the size is known at compile time, it is 

declared with that size directly in the kernel
● Call to __syncthreads() is needed if entries 

computed with other threads are used

__global__ void my_kernel(float *my_other_result) {
__shared__ float var_sh[N+1];

for (int i = threadIdx.x; i < N+1; i++) {
var_sh[i] = …;

}

__syncthreads();

for (int i = threadIdx.x; i < N+1; i++) {
my_other_result[i] = something with var_sh[i]

}
}

my_kernel<<32,32>>(my_other_result);
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Dynamic shared memory

● If the size is only known at run time, shared 
memory can be allocated dynamically

● The size must be known on the host
● It is passed as additional argument to the 

kernel call
● The amount of shared memory per block is the 

same for all blocks within one grid

__global__ void my_kernel(float *my_other_result) {
extern __shared__ float var_sh[];

for (int i = threadIdx.x; i < N+1; i++) {
var_sh[i] = …;

}

__syncthreads();

for (int i = threadIdx.x; i < N+1; i++) {
my_other_result[i] = something with var_sh[i]

}
}

my_kernel<<32,32, (N+1)*sizeof(float)>>(my_other_result);



D. vom Bruch 37

Race conditions → atomic operations
● Caution when modifying the same value in memory from different threads:

• Need to read, modify, write value: three operations
• Outcome depends on timing of the different threads
• Thread 1 can modify  after thread 2 read a value, but before thread 2 writes a new value!

● Use atomic operations:
• Read-modify-write cannot be interrupted: appears to be one operation 
• atomicAdd(), atomicSub(), atomicInc(), atomicDec(), …

● Needed for both shared and global memory

Thread 0 Thread 1 Thread 2

One global / shared memory location
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Index calculation

● It is often useful to parallelize the processing of one array with both blocks and threads
● Unique index = x + y * size 
● int index = threadIdx.x + blockIdx.x * blockDim.x;

0

blockdIdx.x = 1 blockdIdx.x = 2

1 2 3 0 1 2 3 0 1 2 3
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Compilation

● Use nvcc for compilation:
• Calls nvcc for CUDA parts
• Calls gcc for c++ parts

● nvcc FirstProgram.cu -o executableName

● Also takes C, C++, library, object, shared ojbect... files as input
● Can link libraries, include header files
● Can integrate into larger projects with CMake
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Resources

● D. B. Kirk, W. w. Hwu: “Programming Massively Parallel Processors”
● J. Sanders, E. Kandrot: “CUDA by Example”
● N. Wilt: “The CUDA Handbook”
● http://docs.nvidia.com/cuda/cuda-c-programming-guide/
● http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#axzz4LdAUcCyr
http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#axzz4LdAUcCyr
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Summary

● GPU architecture uses SIMT paradigm: threads process same instruction on independent data
● Parallelization occurs on two levels: blocks and threads
● Assignment of blocks to Streaming Multiprocessors based on resource usage
● Memory hierarchy similar to CPU memory, but explicitly chosen by programmer
● Execution order of threads and blocks is random → synchronization required by programmer 
● Few special functions in CUDA to express parallelization, memory type and synchronization
● Pay attention to race conditions when several streams access the same memory location

● Main concept is that of many threads doing work in parallel
● Need to develop algorithm expressing the parallelism
● Coding itself is mainly C / C++
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Backup
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SoA vs. AoS
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Control flow

Image source

● Hide memory copies between host and 
device by using several pipelines

● Cuda terminology for pipeline: “stream”

https://leimao.github.io/blog/CUDA-Stream/
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Synchronization with streams

● If no streams are explicitly defined, the “default” stream is used
● To use several streams as pipelines, need to create them specifically

cudaStream_t streams[num_streams];

for (int i = 0; i < num_streams; i++) {
cudaStreamCreate(&streams[i]);

cudaMalloc(&data_d[i], N * sizeof(float));

my_kernel<<1024,32, 0, streams[i]>>(data_d[i],N);

cudaMemcpyAsync(data_h[i], data_d[i], N * sizeof(float), stream[i]);

}

● cudaDeviceSynchronize() waits for all streams to have finished
● cudaStreamSynchronize(stream[i]) waits only for stream[i] to finish
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