Marcel Trattner

Pulsar Data Analysis

A use case to increase scalability

Big Data Challenges

- Square Kilometre Array Observatory (SKAO)
- ~1 Petabyte per single image
- Novel demands on computing

 $https://skach.org/wp-content/uploads/2022/01/White-paper_Swiss-interest-and-contribution-in-SKA-1.pdf$

Limitations in Scalability

- Parallel processing analysis of the astronomical framework CASA
- Relative speedup measured in relation to number of workers
- Maximal speedup has been reached at 8 nodes and declines afterwards

Architecture of Pulsar Analysis Tool

- Main code written in C++ for maximal performance
- C++ library embedded into python for easier usability through Jupyter Notebook
- All necessary dependencies packages inside Singularity container for fast deployment in data centers

Implementation of Pulsar Simulation

Simulation of Pulsar data is at first conceptualized in Python and then translated to C++ for performance

Python simulation:

[Saha, 2023]

C++ translation:

[Trattner, 2023]

Python vs C++ Execution Time

Execution time in microseconds for different functions in the Python and C++ implementation are plotted on a **logarithmic** scale

Next steps: Making Decisions for Architecture

- How can performance in parallel processing scale up?
- How can we distribute data chunks to individual workers?

Possible ideas:

- Shared Memory
- Memory Centric (50 TB addressable by HP)
- Lock Free?
- Steaming?

• • •

University of Applied Sciences

www.htw-berlin.de