
Suggested line of text (optional):

WE START WITH YES.

February 1, 2023

Enabling Insights Into
HPC Application I/O
Behavior With Darshan

erhtjhtyhy

Shane Snyder
ssnyder@mcs.anl.gov
Argonne National Laboratory

HSF Software Developer Tools and
Packaging Working Group Meeting

❖ The ability to characterize and understand application
I/O workloads is critical to ensuring efficient use of an
evolving and increasingly complex HPC I/O stack
➢ Deep layers of coordinating I/O libraries and entirely

new-to-HPC storage paradigms (e.g., object storage)
➢ Emerging storage hardware (e.g., PMEM) and storage

architectures (e.g., burst buffers)

❖ I/O analysis tools are invaluable in helping to navigate
this complexity and to better understand I/O
➢ Characterize I/O behavior of individual jobs to inform

tuning decisions
➢ Characterize job populations to better understand

system-wide I/O stack usage and optimize deployments

Understanding and improving HPC I/O

2

Darshan: A tool for HPC I/O understanding

3

❖ Darshan is a lightweight I/O characterization tool that captures concise views
of HPC application I/O behavior
➢ Produces a summary of I/O activity for each instrumented job

■ Counters, histograms, timers, & statistics
■ If requested by user, full I/O traces

❖ Widely available
➢ Deployed (and commonly enabled by default) at many HPC facilities around the world

❖ Easy to use
➢ No code changes required to integrate Darshan instrumentation
➢ Negligible performance impact; just “leave it on”

❖ Modular
➢ Adding instrumentation for new I/O interfaces or storage components is straightforward

What is Darshan?

4

How does Darshan work?

5

❖ Darshan records file access statistics for each
process as app executes

❖ At app shutdown, collect, aggregate,
compress, and write log data

❖ After job completes, analyze Darshan log data
➢ darshan-job-summary - provides a summary PDF

characterizing application I/O behavior
➢ darshan-parser - provides complete text-format

dump of all counters in a log file
➢ PyDarshan - Python analysis module for Darshan logs

❖ Originally designed for MPI applications, but in recent Darshan versions (3.2+) any
dynamically-linked executable can be instrumented
➢ In MPI mode, a log is generated for each app
➢ In non-MPI mode, a log is generated for every process

Using Darshan

6

Instrumenting apps with Darshan

❖ On many HPC platforms
(e.g., ALCF Theta, NERSC
Cori & Perlmutter, OLCF
Summit), Darshan is already
installed and enabled by
default
➢ Just compile and run

your apps like normal
➢ Logs are written to a

central repository for all
users when the app
terminates

7

Traditional usage on HPC platforms

Darshan 3.3.0 is enabled by default on ALCF Theta

‘darshan-config --log-path’ command can be
used to find output log directory. Directory is further

organized into year/month/day subdirectories.

Log file name includes username, app name, and job
ID for easy identification, e.g.: snyder_ior_id12345…

Instrumenting apps with Darshan

❖ On many HPC platforms
(e.g., ALCF Theta, NERSC
Cori & Perlmutter, OLCF
Summit), Darshan is already
installed and enabled by
default
➢ Just compile and run

your apps like normal
➢ Logs are written to a

central repository for all
users when the app
terminates

8

Traditional usage on HPC platforms

Important caveats related to non-MPI usage:
● Requires dynamically-linked executables
● Non-MPI mode must be explicitly enabled

via env variable
○ export DARSHAN_ENABLE_NONMPI=1

● Some systems may have dated Darshan
versions that don’t properly support
non-MPI mode

Instrumenting apps with Darshan

❖ In some circumstances, it may be necessary to roll your own install
➢ Darshan not installed or lacking necessary features
➢ Need to build Darshan in specific software environments (e.g.,

containers with old compilers)

❖ Beyond installing from source, Darshan is also available on Spack
➢ darshan-runtime: runtime instrumentation library linked with application
➢ darshan-util: log analysis utilities
➢ E.g., “spack install darshan-runtime”

❖ Once installed, users can LD_PRELOAD the darshan-runtime library
➢ Output logs are written to directory pointed to by

DARSHAN_LOG_DIR_PATH environment variable (defaults to $HOME)

9

Installing and using your own Darshan tools

Analyzing Darshan logs

❖ After locating your log, the
darshan-job-summary script is a
useful starting point for visualizing
application I/O behavior:
➢ “darshan-job-summary.pl

<input_log>” produces a
PDF with same name as input
log

➢ Contains useful graphs,
tables, and performance
estimates describing
application I/O behavior

10

Analyzing Darshan logs

11

Note: This darshan-job-summary.pl
tool will soon be deprecated by a new,
more comprehensive Python-based
Darshan summary tool – more on this
coming soon!

Analyzing Darshan logs

❖ After locating your log, the
darshan-job-summary script is a
useful starting point for visualizing
application I/O behavior:
➢ “darshan-job-summary.pl

<input_log>” produces a
PDF with same name as input
log

➢ Contains useful graphs,
tables, and performance
estimates describing
application I/O behavior

Job metadata and performance estimates

12

Analyzing Darshan logs

❖ After locating your log, the
darshan-job-summary script is a
useful starting point for visualizing
application I/O behavior:
➢ “darshan-job-summary.pl

<input_log>” produces a
PDF with same name as input
log

➢ Contains useful graphs,
tables, and performance
estimates describing
application I/O behavior

Across main I/O interfaces, how much time
was spent reading, writing, doing

metadata, or computing?

If mostly compute, limited opportunities for
I/O tuning

13

Analyzing Darshan logs

❖ After locating your log, the
darshan-job-summary script is a
useful starting point for visualizing
application I/O behavior:
➢ “darshan-job-summary.pl

<input_log>” produces a
PDF with same name as input
log

➢ Contains useful graphs,
tables, and performance
estimates describing
application I/O behavior

What were the relative totals of different I/O
operations across key interfaces?

Lots of metadata operations (open, stat, seek,
etc.) could be a sign of poorly performing I/O

14

Key Darshan instrumentation capabilities

15

Low-level I/O instrumentation

❖ Darshan provides in-depth instrumentation of
the lower layers of traditional HPC I/O stack:
➢ MPI-IO parallel I/O interface
➢ POSIX file system interface
➢ STDIO buffered stream I/O interface
➢ Lustre file system striping parameters

❖ Captures fixed set of statistics, properties,
and timing info for each file accessed using
these interfaces

❖ Informs on key I/O performance
characteristics of foundational components of
the HPC I/O stack

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Technologies

S
to

ra
ge

 a
bs

tra
ct

io
ns

16

Low-level I/O instrumentation

❖ Beyond its traditional capture mode, Darshan
offers features for obtaining finer-grained
details of low-level I/O activity:
➢ Heatmap module: captures histograms of I/O

activity at each process using a fixed size
histogram

■ Available for POSIX, MPI-IO, and
STDIO interfaces by default in 3.4+
versions of Darshan

➢ DXT modules: captures full I/O traces at
each process using a configurable buffer size

■ Available for POSIX and MPI-IO
modules

■ Enabled using DXT_ENABLE_IO_TRACE
environment variable

Heatmaps showcase application I/O
intensity across time, ranks, and

interfaces – helpful for identifying hot
spots, I/O and compute phases, etc.

17

Low-level I/O instrumentation

❖ Beyond its traditional capture mode, Darshan
offers features for obtaining finer-grained
details of low-level I/O activity:
➢ Heatmap module: captures histograms of I/O

activity at each process using a fixed size
histogram

■ Available for POSIX, MPI-IO, and
STDIO interfaces by default in 3.4+
versions of Darshan

➢ DXT modules: captures full I/O traces at
each process using a configurable buffer size

■ Available for POSIX and MPI-IO
modules

■ Enabled using DXT_ENABLE_IO_TRACE
environment variable

These heatmaps could similarly be used
to show I/O intensity across a set of

processes involved in an HEP workflow,
rather than ranks in an MPI app

18

High-level I/O library instrumentation

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Technologies

S
to

ra
ge

 a
bs

tra
ct

io
ns

❖ Darshan similarly provides in-depth
instrumentation of HDF5 and Parallel netCDF,
popular high-level I/O libraries for HPC

❖ HDF5 support is of particular interest, given
its gaining traction in different HEP contexts
➢ Darshan provides detailed instrumentation of

accesses to HDF5 files and datasets in 3.2+
versions

❖ Full-stack characterization allows deeper
understanding of app usage of I/O libraries,
as well as underlying performance
characteristics for these usage patterns

19

❖ The MACSio¹ benchmark evaluates behavior of multi-physics I/O workloads
using different I/O backends, including HDF5
➢ We instrumented using Darshan’s HDF5 module to see what insights we could gain into

performance characteristics of independent and collective I/O configurations

20 1. https://github.com/LLNL/MACSio

b/w: ~30 MB/sec

POSIX I/O dominates, H5
incurs non-negligible
overhead forming this

workload

Negligible time spent in
MPI-IO

b/w: ~290 MB/sec

H5 and POSIX incur
minimal overhead for

this workload

MPI-IO collective I/O
algorithm dominates

Average per-process time spent in I/O

HDF5 application instrumentation example

New Darshan log analysis capabilities

21

PyDarshan log analysis framework

❖ Darshan has traditionally offered only the C-based darshan-util library and a
handful of corresponding tools to users for log file analysis
➢ Implementing customized analysis tasks can become extremely cumbersome

❖ PyDarshan developed to simplify the interfacing of analysis tools with log data
➢ Use Python CFFI module to define Python bindings to the native darshan-utils C API
➢ Expose Darshan log data as dictionaries, pandas dataframes, and NumPy arrays

❖ PyDarshan enables a richer ecosystem for development of Darshan log
analysis tools, by the Darshan team and by end users

PyDarshan development led by
Jakob Luttgau (UTK), Tyler Reddy

and Nik Awtrey (LANL)

22

Available via PyPI or Spack:
★ “pip install darshan”
★ “spack install py-darshan”

PyDarshan job summary tool

❖ PyDarshan includes a new job summary tool that will soon replace the
darshan-job-summary.pl script
➢ Generates detailed HTML reports summarizing application I/O behavior using

different plots, graphs, and statistics
➢ Builds off popular Python libraries like matplotlib (plotting), seaborn (plotting),

and mako (HTML templating)
❖ Users can generate summary reports for a given Darshan log file using the

following command:
➢ ‘python -m darshan summary <path_to_log_file>’
➢ Generates an output HTML report describing job’s I/O behavior

23

PyDarshan job summary tool

24

Detailed job metadata

I/O cost for all
APIs

Total files and bytes
read/written to

different categories
(mount points,

standard streams,
etc.)

Darshan analysis of HEP workflows

25

Thanks to Rui Wang (ANL) for
ATLAS Athena analysis!

Darshan usage in HEP contexts

❖ HEP-CCE IOS project: Investigate how to utilize Darshan to understand and
improve the I/O behavior of HEP workflows
➢ What are the performance characteristics of different HEP I/O workloads?
➢ How does HEP software interact with HPC I/O libraries and storage systems? Can

these interactions be optimized?

❖ Our studies have motivated a couple of important improvements to Darshan
➢ Proper instrumentation of forked processes

■ Darshan library now detects when a fork occurs and resets instrumentation state on all
child processes to start from a clean slate

➢ Runtime library configuration
■ Gives user fine-grained runtime control over instrumentation scope (i.e., what interfaces

and what files to instrument) and library memory usage

26

ATLAS offline software – Athena
Various Athena Modes
❖ AthenaMP (multi-Process)+standalone merging – Run2

original
➢ Independent parallel workers are forked from main

process with shared memory allocation
➢ Each worker produces its own outputs and merged later

via a post-processing merge process

❖ AthenaMP+SharedWriter (multi-Process) – Run2
➢ A shared writer process does all the output writes
➢ Reduce time on single thread merging process

❖ AthenaMP+SharedWriter (parallelCompression) – Run3
➢ Uses parallel compression to reduce the time increment

when moving to higher No. of process

❖ AthenaMT (multi-thread)
➢ Gaudi task scheduler maps tasks to kernel threads
➢ Shared single pool of heap memory

27

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Computingand
SoftwarePublicResults

28

Athena I/O monitoring
❖ MC Simulation – CPU intensive

➢ AthenaMP+Standalone merging
➢ AthenaMP+SharedWriter
➢ AthenaMT

❖ Derivation (DAOD) production – I/O intensive
➢ AthenaMP+Standalone merging
➢ AthenaMP+SharedWriter
➢ AthenaMP+SharedWriter (parallel compression)

Running on 1 node with 36 cores

Study Initiated

29

Athena I/O monitoring
❖ Use Darshan as the I/O monitoring tool for Atlas HPC workflow to gain deeper insights into I/O patterns of

Athena

enable DXT modules, which are off by default
MOD_ENABLE DXT_POSIX,DXT_MPIIO

allocate 4096 file records for POSIX and MPI-IO modules
(darshan only allocates 1024 per-module by default)
MAX_RECORDS 5000 POSIX

the '*' specifier can be used to apply settings for all modules
in this case, we want all modules to ignore record names
prefixed with "/home" (i.e., stored in our home directory),
with a superseding inclusion for files with a ".out" suffix)
NAME_EXCLUDE .pyc$,^/cvmfs,^/lib64,^/lib,^/blues/gpfs/home/software *
NAME_INCLUDE .pool.root.* *

bump up Darshan's default memory usage to 8 MiB
MODMEM 8

avoid generating logs for git and ls binaries
APP_EXCLUDE git,ls,sh,hostname,sed,g++,date,cc1plus,cat,which,tar,ld
APP_INCLUDE python

Derivation_tf.py …… --athenaopts='
--preloadlib=$DARSHAN_BASE_DIR/lib/
libdarshan.so'

> head log.EVNTtoHITS
11:00:45 Thu Oct 6 11:00:45 CDT 2022
11:00:45 Preloading
/lcrc/group/ATLAS/users/rwang/Argonne_computing/PPS-CCE/dar
shan/build_darshan/dev-fork-child-issue786/lib/libdarshan.so
11:00:45 ##########################
11:00:45 ##### DARSHAN CONFIG #####
11:00:45 ##########################

Use LD_PRELOAD to interpose
Darshan instrumentation in Athena

Use custom Darshan configuration to exclude
/cvmfs activities in runtime environment

Darshan POSIX I/O analysis

30

Simulation DAOD production

▪ In AthenaMP each worker writes, while a
standalone merge process reads all output
file of each worker then write to a single file

▪ In SharedWriter, a single process writes on
behalf of workers

▪ Additional reads in the shared writer process
when using parallel compression

Darshan POSIX I/O analysis

31

DAOD production

● PHYS: AOD data model
with reduced trigger, MC
truth and tracking info

● PHYSLITE: event with
calibrated objects, further
reduced list of variables
from PHYS

● PHYS-PHYSLITE:
producing PHYS then
PHYSLITE in a train
(default for ATLAS
production)

DAOD production

● PHYS: AOD data model
with reduced trigger, MC
truth and tracking info

● PHYSLITE: event with
calibrated objects, further
reduced list of variables
from PHYS

● PHYS-PHYSLITE:
producing PHYS then
PHYSLITE in a train
(default for ATLAS
production)

● Parallel Compression is disabled for < 1K process
● Chunk size=100

READ

WRITE

Dominated by the
standalone merging

What’s next for Darshan?

32

Ongoing Darshan development activities

❖ Instrumentation of DAOS libraries
➢ ALCF Aurora will feature Intel’s DAOS storage system, a first-of-a-kind object-based storage

system for large-scale HPC platforms
➢ Darshan will implement instrumentation for DAOS file and object interfaces to better

understand how apps and I/O middleware make use of this new paradigm
❖ Continued development efforts on log analysis tools

➢ Refining new PyDarshan log analysis framework
➢ Recommendations, warnings, and other feedback based on observed I/O patterns
➢ Analysis tools for workflows (i.e., multiple Darshan logs created by multiple job steps)

33

Wrapping up

❖ Darshan is an invaluable tool for HPC application scientists, facilities, and I/O
researchers for better understanding application I/O behavior
➢ Detailed instrumentation of application access to multiple layers of the HPC I/O stack
➢ Helpful tools for extracting salient data from Darshan logs and summarizing for users

❖ Ongoing efforts from the Darshan team and the HEP community to leverage Darshan
for better understanding/improving HEP I/O behavior on HPC systems!

❖ Please reach out with any questions, comments, or feedback!

❖ Darshan website, docs: https://www.mcs.anl.gov/research/projects/darshan/
❖ Source code, issue tracking: https://github.com/darshan-hpc/darshan
❖ Darshan-users mailing list: darshan-users@lists.mcs.anl.gov

34

https://www.mcs.anl.gov/research/projects/darshan/
https://github.com/darshan-hpc/darshan
mailto:darshan-users@lists.mcs.anl.gov

Acknowledgement

This work was supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing
Research, under Contract DE-AC02-06CH11357. This research used resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under contract DE-AC02-06CH11357. This research also used resources and data generated from resources of the
National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office
of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

35

