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❖ The ability to characterize and understand application 
I/O workloads is critical to ensuring efficient use of an 
evolving and increasingly complex HPC I/O stack 
➢ Deep layers of coordinating I/O libraries and entirely 

new-to-HPC storage paradigms (e.g., object storage)
➢ Emerging storage hardware (e.g., PMEM) and storage 

architectures (e.g., burst buffers)

❖ I/O analysis tools are invaluable in helping to navigate 
this complexity and to better understand I/O
➢ Characterize I/O behavior of individual jobs to inform 

tuning decisions
➢ Characterize job populations to better understand 

system-wide I/O stack usage and optimize deployments

Understanding and improving HPC I/O
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Darshan: A tool for HPC I/O understanding
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❖ Darshan is a lightweight I/O characterization tool that captures concise views 
of HPC application I/O behavior
➢ Produces a summary of I/O activity for each instrumented job

■ Counters, histograms, timers, & statistics
■ If requested by user, full I/O traces

❖ Widely available
➢ Deployed (and commonly enabled by default) at many HPC facilities around the world

❖ Easy to use
➢ No code changes required to integrate Darshan instrumentation
➢ Negligible performance impact; just “leave it on”

❖ Modular
➢ Adding instrumentation for new I/O interfaces or storage components is straightforward

What is Darshan?
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How does Darshan work?
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❖ Darshan records file access statistics for each 
process as app executes

❖ At app shutdown, collect, aggregate, 
compress, and write log data

❖ After job completes, analyze Darshan log data 
➢ darshan-job-summary - provides a summary PDF 

characterizing application I/O behavior
➢ darshan-parser - provides complete text-format 

dump of all counters in a log file
➢ PyDarshan - Python analysis module for Darshan logs 

❖ Originally designed for MPI applications, but in recent Darshan versions (3.2+) any 
dynamically-linked executable can be instrumented
➢ In MPI mode, a log is generated for each app
➢ In non-MPI mode, a log is generated for every process



Using Darshan
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Instrumenting apps with Darshan

❖ On many HPC platforms 
(e.g., ALCF Theta, NERSC 
Cori & Perlmutter, OLCF 
Summit), Darshan is already 
installed and enabled by 
default
➢ Just compile and run 

your apps like normal
➢ Logs are written to a 

central repository for all 
users when the app 
terminates
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Traditional usage on HPC platforms

Darshan 3.3.0 is enabled by default on ALCF Theta

‘darshan-config --log-path’ command can be 
used to find output log directory. Directory is further 

organized into year/month/day subdirectories.

Log file name includes username, app name, and job 
ID for easy identification, e.g.: snyder_ior_id12345…



Instrumenting apps with Darshan

❖ On many HPC platforms 
(e.g., ALCF Theta, NERSC 
Cori & Perlmutter, OLCF 
Summit), Darshan is already 
installed and enabled by 
default
➢ Just compile and run 
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➢ Logs are written to a 

central repository for all 
users when the app 
terminates
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Traditional usage on HPC platforms

Important caveats related to non-MPI usage:
● Requires dynamically-linked executables
● Non-MPI mode must be explicitly enabled 

via env variable
○ export DARSHAN_ENABLE_NONMPI=1

● Some systems may have dated Darshan 
versions that don’t properly support 
non-MPI mode



Instrumenting apps with Darshan

❖ In some circumstances, it may be necessary to roll your own install
➢ Darshan not installed or lacking necessary features
➢ Need to build Darshan in specific software environments (e.g., 

containers with old compilers)

❖ Beyond installing from source, Darshan is also available on Spack
➢ darshan-runtime: runtime instrumentation library linked with application
➢ darshan-util: log analysis utilities
➢ E.g., “spack install darshan-runtime”

❖ Once installed, users can LD_PRELOAD the darshan-runtime library 
➢ Output logs are written to directory pointed to by 

DARSHAN_LOG_DIR_PATH environment variable (defaults to $HOME)
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Installing and using your own Darshan tools



Analyzing Darshan logs

❖ After locating your log, the 
darshan-job-summary script is a 
useful starting point for visualizing 
application I/O behavior:
➢ “darshan-job-summary.pl 

<input_log>” produces a 
PDF with same name as input 
log

➢ Contains useful graphs, 
tables, and performance 
estimates describing 
application I/O behavior
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Analyzing Darshan logs
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Note: This darshan-job-summary.pl 
tool will soon be deprecated by a new, 
more comprehensive Python-based 
Darshan summary tool – more on this 
coming soon!



Analyzing Darshan logs

❖ After locating your log, the 
darshan-job-summary script is a 
useful starting point for visualizing 
application I/O behavior:
➢ “darshan-job-summary.pl 

<input_log>” produces a 
PDF with same name as input 
log

➢ Contains useful graphs, 
tables, and performance 
estimates describing 
application I/O behavior

Job metadata and performance estimates
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Analyzing Darshan logs

❖ After locating your log, the 
darshan-job-summary script is a 
useful starting point for visualizing 
application I/O behavior:
➢ “darshan-job-summary.pl 

<input_log>” produces a 
PDF with same name as input 
log

➢ Contains useful graphs, 
tables, and performance 
estimates describing 
application I/O behavior

Across main I/O interfaces, how much time 
was spent reading, writing, doing 

metadata, or computing?

If mostly compute, limited opportunities for 
I/O tuning
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Analyzing Darshan logs

❖ After locating your log, the 
darshan-job-summary script is a 
useful starting point for visualizing 
application I/O behavior:
➢ “darshan-job-summary.pl 

<input_log>” produces a 
PDF with same name as input 
log

➢ Contains useful graphs, 
tables, and performance 
estimates describing 
application I/O behavior

What were the relative totals of different I/O 
operations across key interfaces?

Lots of metadata operations (open, stat, seek, 
etc.) could be a sign of poorly performing I/O
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Key Darshan instrumentation capabilities
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Low-level I/O instrumentation

❖ Darshan provides in-depth instrumentation of 
the lower layers of traditional HPC I/O stack:
➢ MPI-IO parallel I/O interface
➢ POSIX file system interface
➢ STDIO buffered stream I/O interface
➢ Lustre file system striping parameters

❖ Captures fixed set of statistics, properties, 
and timing info for each file accessed using 
these interfaces

❖ Informs on key I/O performance 
characteristics of foundational components of 
the HPC I/O stack

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Technologies
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Low-level I/O instrumentation

❖ Beyond its traditional capture mode, Darshan 
offers features for obtaining finer-grained 
details of low-level I/O activity:
➢ Heatmap module: captures histograms of I/O 

activity at each process using a fixed size 
histogram

■ Available for POSIX, MPI-IO, and 
STDIO interfaces by default in 3.4+ 
versions of Darshan

➢ DXT modules: captures full I/O traces at 
each process using a configurable buffer size

■ Available for POSIX and MPI-IO 
modules

■ Enabled using DXT_ENABLE_IO_TRACE 
environment variable

Heatmaps showcase application I/O 
intensity across time, ranks, and 

interfaces – helpful for identifying hot 
spots, I/O and compute phases, etc.
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Low-level I/O instrumentation

❖ Beyond its traditional capture mode, Darshan 
offers features for obtaining finer-grained 
details of low-level I/O activity:
➢ Heatmap module: captures histograms of I/O 

activity at each process using a fixed size 
histogram

■ Available for POSIX, MPI-IO, and 
STDIO interfaces by default in 3.4+ 
versions of Darshan

➢ DXT modules: captures full I/O traces at 
each process using a configurable buffer size

■ Available for POSIX and MPI-IO 
modules

■ Enabled using DXT_ENABLE_IO_TRACE 
environment variable

These heatmaps could similarly be used 
to show I/O intensity across a set of 

processes involved in an HEP workflow, 
rather than ranks in an MPI app
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High-level I/O library instrumentation
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❖ Darshan similarly provides in-depth 
instrumentation of HDF5 and Parallel netCDF, 
popular high-level I/O libraries for HPC 

❖ HDF5 support is of particular interest, given 
its gaining traction in different HEP contexts
➢ Darshan provides detailed instrumentation of 

accesses to HDF5 files and datasets in 3.2+ 
versions

❖ Full-stack characterization allows deeper 
understanding of app usage of I/O libraries, 
as well as underlying performance 
characteristics for these usage patterns
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❖ The MACSio¹ benchmark evaluates behavior of multi-physics I/O workloads 
using different I/O backends, including HDF5 
➢ We instrumented using Darshan’s HDF5 module to see what insights we could gain into 

performance characteristics of independent and collective I/O configurations

20 1.  https://github.com/LLNL/MACSio

b/w: ~30 MB/sec

POSIX I/O dominates, H5 
incurs non-negligible 
overhead forming this 

workload

Negligible time spent in 
MPI-IO

b/w: ~290 MB/sec

H5 and POSIX incur 
minimal overhead for 

this workload

MPI-IO collective I/O 
algorithm dominates

Average per-process time spent in I/O

HDF5 application instrumentation example



New Darshan log analysis capabilities
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PyDarshan log analysis framework

❖ Darshan has traditionally offered only the C-based darshan-util library and a 
handful of corresponding tools to users for log file analysis
➢ Implementing customized analysis tasks can become extremely cumbersome

❖ PyDarshan developed to simplify the interfacing of analysis tools with log data
➢ Use Python CFFI module to define Python bindings to the native darshan-utils C API
➢ Expose Darshan log data as dictionaries, pandas dataframes, and NumPy arrays

❖ PyDarshan enables a richer ecosystem for development of Darshan log 
analysis tools, by the Darshan team and by end users

PyDarshan development led by 
Jakob Luttgau (UTK), Tyler Reddy 

and Nik Awtrey (LANL)
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Available via PyPI or Spack:
★ “pip install darshan”
★ “spack install py-darshan”



PyDarshan job summary tool

❖ PyDarshan includes a new job summary tool that will soon replace the 
darshan-job-summary.pl script
➢ Generates detailed HTML reports summarizing application I/O behavior using 

different plots, graphs, and statistics
➢ Builds off popular Python libraries like matplotlib (plotting), seaborn (plotting), 

and mako (HTML templating)
❖ Users can generate summary reports for a given Darshan log file using the 

following command:
➢ ‘python -m darshan summary <path_to_log_file>’
➢ Generates an output HTML report describing job’s I/O behavior
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PyDarshan job summary tool
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Detailed job metadata

I/O cost for all 
APIs

Total files and bytes 
read/written to 

different categories 
(mount points, 

standard streams, 
etc.)



Darshan analysis of HEP workflows
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Thanks to Rui Wang (ANL) for 
ATLAS Athena analysis!



Darshan usage in HEP contexts

❖ HEP-CCE IOS project:  Investigate how to utilize Darshan to understand and 
improve the I/O behavior of HEP workflows
➢ What are the performance characteristics of different HEP I/O workloads?
➢ How does HEP software interact with HPC I/O libraries and storage systems? Can 

these interactions be optimized?

❖ Our studies have motivated a couple of important improvements to Darshan
➢ Proper instrumentation of forked processes

■ Darshan library now detects when a fork occurs and resets instrumentation state on all 
child processes to start from a clean slate

➢ Runtime library configuration
■ Gives user fine-grained runtime control over instrumentation scope (i.e., what interfaces 

and what files to instrument) and library memory usage
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ATLAS offline software – Athena
Various Athena Modes
❖ AthenaMP (multi-Process)+standalone merging – Run2 

original
➢ Independent parallel workers are forked from main 

process with shared memory allocation
➢ Each worker produces its own outputs and merged later 

via a post-processing merge process

❖ AthenaMP+SharedWriter (multi-Process) – Run2
➢ A shared writer process does all the output writes
➢ Reduce time on single thread merging process

❖ AthenaMP+SharedWriter (parallelCompression) – Run3 
➢ Uses parallel compression to reduce the time increment 

when moving to higher No. of process

❖ AthenaMT (multi-thread)
➢ Gaudi task scheduler maps tasks to kernel threads
➢ Shared single pool of heap memory
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Computingand
SoftwarePublicResults
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Athena I/O monitoring
❖ MC Simulation – CPU intensive

➢ AthenaMP+Standalone merging
➢ AthenaMP+SharedWriter
➢ AthenaMT

❖ Derivation (DAOD) production – I/O intensive
➢ AthenaMP+Standalone merging
➢ AthenaMP+SharedWriter
➢ AthenaMP+SharedWriter (parallel compression)

Running on 1 node with 36 cores

Study Initiated 
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Athena I/O monitoring
❖ Use Darshan as the I/O monitoring tool for Atlas HPC workflow to gain deeper insights into I/O patterns of 

Athena

# enable DXT modules, which are off by default
MOD_ENABLE      DXT_POSIX,DXT_MPIIO

# allocate 4096 file records for POSIX and MPI-IO modules
# (darshan only allocates 1024 per-module by default)
MAX_RECORDS     5000      POSIX

# the '*' specifier can be used to apply settings for all modules
# in this case, we want all modules to ignore record names
# prefixed with "/home" (i.e., stored in our home directory),
# with a superseding inclusion for files with a ".out" suffix)
NAME_EXCLUDE    .pyc$,^/cvmfs,^/lib64,^/lib,^/blues/gpfs/home/software   *
NAME_INCLUDE     .pool.root.*   *

# bump up Darshan's default memory usage to 8 MiB
MODMEM  8

# avoid generating logs for git and ls binaries
APP_EXCLUDE     git,ls,sh,hostname,sed,g++,date,cc1plus,cat,which,tar,ld
APP_INCLUDE     python

Derivation_tf.py …… --athenaopts=' 
--preloadlib=$DARSHAN_BASE_DIR/lib/
libdarshan.so'

> head log.EVNTtoHITS 
11:00:45 Thu Oct  6 11:00:45 CDT 2022
11:00:45 Preloading 
/lcrc/group/ATLAS/users/rwang/Argonne_computing/PPS-CCE/dar
shan/build_darshan/dev-fork-child-issue786/lib/libdarshan.so
11:00:45 ##########################
11:00:45 ##### DARSHAN CONFIG #####
11:00:45 ##########################

Use LD_PRELOAD to interpose 
Darshan instrumentation in Athena

Use custom Darshan configuration to exclude 
/cvmfs activities in runtime environment



Darshan POSIX I/O analysis
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Simulation DAOD production

▪ In AthenaMP each worker writes, while a 
standalone merge process reads all output 
file of each worker then write to a single file

▪ In SharedWriter, a single process writes on 
behalf of workers

▪ Additional reads in the shared writer process 
when using parallel compression



Darshan POSIX I/O analysis
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DAOD production

● PHYS: AOD data model 
with reduced trigger, MC 
truth and tracking info

● PHYSLITE: event with 
calibrated objects, further 
reduced list of variables 
from PHYS

● PHYS-PHYSLITE: 
producing PHYS then 
PHYSLITE in a train 
(default for ATLAS 
production)

DAOD production

● PHYS: AOD data model 
with reduced trigger, MC 
truth and tracking info

● PHYSLITE: event with 
calibrated objects, further 
reduced list of variables 
from PHYS

● PHYS-PHYSLITE: 
producing PHYS then 
PHYSLITE in a train 
(default for ATLAS 
production)

● Parallel Compression is disabled for < 1K process
● Chunk size=100

READ

WRITE

Dominated by the 
standalone merging



What’s next for Darshan?
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Ongoing Darshan development activities

❖ Instrumentation of DAOS libraries
➢ ALCF Aurora will feature Intel’s DAOS storage system, a first-of-a-kind object-based storage 

system for large-scale HPC platforms
➢ Darshan will implement instrumentation for DAOS file and object interfaces to better 

understand how apps and I/O middleware make use of this new paradigm
❖ Continued development efforts on log analysis tools

➢ Refining new PyDarshan log analysis framework
➢ Recommendations, warnings, and other feedback based on observed I/O patterns
➢ Analysis tools for workflows (i.e., multiple Darshan logs created by multiple job steps)
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Wrapping up

❖ Darshan is an invaluable tool for HPC application scientists, facilities, and I/O 
researchers for better understanding application I/O behavior
➢ Detailed instrumentation of application access to multiple layers of the HPC I/O stack
➢ Helpful tools for extracting salient data from Darshan logs and summarizing for users

❖ Ongoing efforts from the Darshan team and the HEP community to leverage Darshan 
for better understanding/improving HEP I/O behavior on HPC systems!

❖ Please reach out with any questions, comments, or feedback!

❖ Darshan website, docs: https://www.mcs.anl.gov/research/projects/darshan/ 
❖ Source code, issue tracking: https://github.com/darshan-hpc/darshan 
❖ Darshan-users mailing list: darshan-users@lists.mcs.anl.gov 
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