

Interaction models

Model	Energy(GeV)	Remarks
dpmjet3	<5<	charm. @UHE ?
qgsjetII-03	>80	
qgsjetII-04	>80	LHC-tuned
EPOS1.99	>80	
EPOS-LHC-3400	>80	LHC-tuned
EPOS-LHC-3700	>80	LHC-tuned, A>26 ok
Sibyll2.1	>80	only p, Air target
JAM	<rhic< td=""><td>No heavy fragm. Pt seems small</td></rhic<>	No heavy fragm. Pt seems small
PHITS	<2	JAEA code: neutron
Sofia	> mπ	photo-hadron prod.
Fritiof1.6	<2000	
Nucrin	<5	
Gheisha	<100 ?	

Sibyll2.3c Sibill2.3d are now available

☆New JAM upto 10^20

10^20 CGC

How to specify the models:

IntModel = "phits" 2 " dpmjet3" 1e6 "epos" 1e8 "qgsjet"

Why we can estimate Eo?

Property of air: $X_0 \sim \lambda_n$ Cf. Pb, W: $\lambda_n/X_0 \sim 30$ BGO: 20

• Propagation

$$\sigma_{in}$$
 $f(x) = \frac{1}{\sigma_{in}} \frac{d\sigma}{dx}$ $x \equiv E_s/E_0$

Spectrum Observation Inclusive: $\mu, \gamma, e, p, \nu, n$

$$\int \delta(E_{\pi} - xE_0) f(x) dx E_0^{-\gamma} dE_0 \rightarrow x^{\gamma - 1} f(x) dx$$

$$x_{eff} = \frac{\langle x^{\gamma} \rangle}{\langle x^{\gamma-1} \rangle} \sim 0.2$$

AS Observation

$$V_e \qquad \int_{0.05} x f(x) dx \sim 50\%$$

$$V_\mu$$

S + Burst (or gamma ray family) (Tibet)

5x10¹⁹ eV proton initiated showers

Zenith angle 60 deg.

Elab(GeV)

Number of muons produced from descendent of Muons first interaction: p 10¹⁷eV

Eta dist. of last interaction which produced muons:

Low Energy Atmospheric Neutrino (muons and protons: mainly by M.Honda)

We have to select "GOOD" data !

BESS 1ry: AMS 1ry muon observation gamma ray observation proton observation

vs Model Calculations

Primary Proton Flux Model

Primary He flux model

Interaction Model

Test with muon flux at Balloon Altiotude

Muon Observations

Comparison of Muon Flux Calculated in HKKM04 and Observed Data.

The differences are $\sim 5\%$ in absolute value for 1 ~ 30 GeV/c, and $\sim 5\%$ in charge ratio for all momentums.

The difference of the absolute value increases at high energies, as $\sim (P/10 \, GeV)^{0.05}$.

Comparison of Modified Results with the Observations

The calculation and data agree well within 10 % in 0.5 GeV/c ~1 TeV/c, and < 5% in 1~30GeV/c.

Summary at low energies (<10TeV)

- Image: dmpjet3 seems good: flux within ~10 %
- However, for better agreement with obsrvations: X-distribution must be enhanced.

10¹⁴ eV region

UA5 problem

• SPS + (ISR); pseudo rapidity distribution $\eta = -\log(\tan \frac{\theta}{2})$

Contradicting to a Si data and M.C

Pseudo rap. UA5 vs Harr etal Silicon data

Harr etal Si data at 630GeV vs Models

M.C method itself:

Computation time and memory size for Full M.C (Emin< 1MeV)

Eo	cpt time @2GHz cpu	disk size
• 1017 eV	~ 1 week	10 GB
• 10 ¹⁹ eV	~ 2 years	1 TB
• 10 ²⁰ eV	~ 20 years	10 TB

Thin sampling (a la Hillas) etc

- Usable for seeing the transition of the total number of particles
- Dangerous for seeing individual particle properties (happens that 10⁵ particles at the same point with the same energy, angle, arrival time etc.)

Distributed-parallel computing

• MPI (?)

 Need complex communications among a number of cpu's (how to distribute tasks).

 Normally not efficient when the number of cpu exceeds some limit (say, 7). New distributed-parallel computing method Skeleton-Flesh method

- Enables Full M.C up to 10¹⁹ eV
- Enables virtual F.M.C at 10²⁰ eV or higher energies
- At the same time, settles the storage size problem

Skeleton-Flesh method

skeleton/smash/flesh/assemlbe

- If ~ 50 cpu's available
 - $10^{19} \text{ eV} \rightarrow 1 \sim 2 \text{ weeks}$
 - Storage: randomly select particles to be recorded
- How about 10²⁰ eV or higher energies

things are rather easy: smashed skeletons are almost identical

10²⁰ eV E_{min}=2x10¹⁵ eV; 1534303 ptcls

cpu# cpuPW Sum E # of ptcls

- 1 1.0 0.9827795E+08 1535
- 2 1.0 0.9827795E+08 1536
- **3 1.0 0.9827795E+08 1536**
- 4 1.0 0.9827795E+08 1536
- **5 1.0 0.9827795E+08 1535**

9951.00.9827795E+0815369961.00.9827795E+0815369971.00.9827795E+0815369981.00.9827795E+0815359991.00.9827795E+081535

Virtual (Quasi) Full M.C at 10²⁰ eV

50's are fleshed

Assemble Thinning

M

500 skeleons

No weighted ptcl's

- (Virtual) Full M.C with Emin=500 keV is possible at the GZK energies.
- One or at most several showers with a given primary energy and angle
- Actually we need ~10³ showers for a given condition

Is such a small number of showers valuable ? yes!

- Thin sampling for transition: 10³
 showers
- Particle properties can be extracted from F.M.C results
- Model dependence: difference of particle numbers and transition

Particle decay

• The concept of decay constant:

The density of atmosphere at height, h, is roughly expressed as

$$ho=
ho_0e^{-rac{h}{h_0}}$$

Since the atmospheric depth, z, is also roughly proportional to ρ , it is also such a function. h_0 is called the scale height of the atmosphere and can be regarded as a measure to express the thickness (height) of the atmosphere.

The value of h_0 is 6.5 ~ 8.5 km, although it should be constant for an ideal isothermal atmosphere (kT/Mg).

Suppose a particle of mass m, proper decay time τ runs in the atmosphere with momentum, p (gamma factor γ and $\beta = 1 - 1/\gamma^2$). If $h_0 > c\beta\gamma\tau$, the particle will tend to decay before reaching the earth surface. While if $h_0 < c\beta\gamma\tau$, it will difficult for the particle to decay. Since $p = m\gamma\beta c$, $h_0 = c\beta\gamma\tau$ is re-written as $h_0 = p_{\overline{m}}^{\tau}$ or $p = h_0 \frac{m}{\tau} \equiv b$. If p > b, the particle decay is less probable. b is called the decay constant. At high energies we may regard momentum as energy, and we may express it in energy. Some important rough numbers:

	mass (GeV)	$c\tau$ (m)	$b~({ m GeV})$
μ	0.1	600	1.5
π^{\pm}	0.14	8	150
π^0	0.14	25×10^{-9}	$5 \times 10^{19} (eV)$
K±	0.5	4	500

Some conclusions from this table:

- Muon energy spectrum bends below few GeV.
- Since major muon source is π, muon spectrum tends to steepen over 150 GeV.
 Major source changes to K.
- At ultra high energy, even π⁰ cannot decay and tends to collide with air. No source of high energy photons so that the LPM will not work efficiently in proton primary showers.

