A bit of cascade theory

Simple toy:

At each 1 radiation length, a particle split into two. In each step, each particle loses energy, ε.
 Then, at t, the total energy lost so far is $\sim \varepsilon \times 2^{t+1}$. If this becomes the incident energy, E_{0}, no more cascade can develop. Thus, the maximum number of particles and the depth of the maximum are:

$$
\begin{aligned}
& N_{\max } \propto \frac{E_{0}}{\varepsilon} \\
& T_{\max } \propto \log \left(\frac{E_{0}}{\varepsilon}\right)
\end{aligned}
$$

This holds even for more complex real showers.

Diffusion Eq.

Rossi: High Energy Particles

 Nishimura: HANDBUCH DER PHYSIK$\pi(E, t)$: number of \mathbf{e} in $(E, E+d E)$ at t in radiation length $\gamma(E, t)$: number of γ

Complete screening: $v=E^{\prime} / E$
Radiation + Paír creation + constant $d E / d t$

Approx. B

Change of the number in Δt.

Decrease: $\int_{0}^{E} \pi(E, t) \varphi\left(E, E^{\prime}\right) d E^{\prime} \Delta t=\int_{0}^{1} \pi(E, t) \varphi_{B}(v) d v \Delta t$
Increase: $\int_{E}^{\infty} \pi\left(E^{\prime}, t\right) \varphi\left(E^{\prime}, E^{\prime}-E\right) d E^{\prime} \Delta t=\int_{0}^{1} \frac{1}{1-v} \pi\left(\frac{E}{1-v}, t\right) \varphi_{B}(v) d v \Delta t$
Increase: $\int_{E}^{\infty} \gamma\left(E^{\prime}, t\right) 2 \varphi\left(E^{\prime}, E\right) d E^{\prime} \Delta t=2 \int_{0}^{1} \gamma\left(\frac{E}{v}, t\right) \varphi_{p}(v) \frac{d v}{v} \Delta t$
Ionization cnergy loss: $\quad \pi(E+\varepsilon \Delta t, t)$ lose energy $\varepsilon \Delta t$ and fall in $\pi(E, t+\Delta t)$ so that the net loss during Δt is
$\pi(E, t+\Delta t)-\pi(E, t)=$
$\pi(E, t)+\varepsilon \frac{\partial \pi(E, t)}{\partial E} \Delta t-\pi(E, t)=\varepsilon \frac{\partial \pi(E, t)}{\partial E} \Delta t$

Hence

$$
\begin{array}{r}
\frac{\partial \pi}{\partial t}=-\int_{0}^{1}\left[\pi(E, t)-\frac{1}{1-v} \pi\left(\frac{E}{1-v}, t\right)\right] \varphi_{B}(v) d v \\
+2 \int_{0}^{1} \gamma\left(\frac{E}{v}, t\right) \varphi_{p}(v) \frac{d v}{v}+\varepsilon \frac{\partial \pi(E, t)}{\partial E}
\end{array}
$$

Similarly we get

$$
\frac{\partial \gamma}{\partial t}=\int_{0}^{1} \pi\left(\frac{E}{v}, t\right) \varphi_{B}(v) \frac{d v}{v}-\sigma_{0} \gamma(E, t)
$$

where $\sigma_{0}=\int_{0}^{1} \varphi(v) d v \sim 7 / 9=0.77$
The solution of these eq. can be obtained by using integral transformation (Mellin transformation). We show first a solution for the number of electrons with energy greater than E for the case of electron incident with energy E_{0}.

For Approxiamtion A, the main term can be written as

$$
\Pi_{A} \equiv \int_{E} \pi(E, t) d E=\frac{1}{2 \pi i} \int d s \frac{1}{s}\left(\frac{E_{0}}{E}\right)^{s} H_{1}(s) e^{\lambda_{1}(s) t}
$$

where $\lambda_{1}(s)$ and $H_{1}(s)$ are functions derived from integrating $\varphi_{B}(v), \varphi_{P}(v)$: They include $A(s)=\int_{0}^{1}\left(1-(1-v)^{2}\right) \varphi_{B}(v) d v, B(s)=2 \int_{0}^{1} v^{s} \varphi_{P}(v) d v$, $\int_{0}^{1} v^{s} \varphi_{B}(v) d v$
The integration (path is running along the imaginary axis) may be evaluated by the saddle point method (note: H_{1} is slowly varying function and other part is collected as $\left.\exp \left(\lambda_{1}+\log \left(E_{0} / E\right)-\log s\right)\right)$:

$$
\Pi_{A}=\frac{H_{1}(s)\left(\frac{E_{0}}{E}\right)^{s} e^{\lambda_{1}(s) t}}{s \sqrt{2 \pi\left(\lambda_{1}^{\prime \prime}(s) t+\frac{1}{s^{2}}\right)}}
$$

where s is the solution of

$$
\lambda_{1}^{\prime}(s) t+\log \left(\frac{E_{0}}{E}\right)-\frac{1}{s}=0
$$

Transition of Π is governed by $e^{\lambda_{1}(s) t}$. λ_{1} is positive at $s<1,0$ at $s=1$ and negative at $s>1$.
Therefore, at $s=1$ the shower maximum is realized: s is called age parameter.

For Approximation B, treatment is more
 complex, but similar expression can be obtained. The total number of electrons (i.e, $E \rightarrow 0$), Π_{B} can be expressed in a similar form as Π_{A} by replacing $E \rightarrow \varepsilon$. The function corresponding to $H_{1}(s)$ becomes much more complex (expressed via H_{1}, Γ and some implicit function of λ_{1} etc). However, the transition is still governed by $e^{\lambda_{1}(s) t}$ so that concept of age is still valid.
The track length $\int \Pi_{B}(t) d t$ is very close to $\frac{E_{0}}{\varepsilon}$. At high energies and for low Z material (say, Air), approximation B is not so bad.

electron primary 10 TeV Approx. B

electron primary 10 TeV

electron primary 10 TeV

We wait for Ee becomes
< say, Eo/100

Same showers as the previous one but without hybrid. Age is from hybrid one

Ionization Energy Loss (-dE/dx)

Bethe-Bloch:

$$
-\frac{d E}{d x}(<\eta)=\frac{2 C m}{\beta^{2}}\left[\ln \frac{2 m \beta^{2} \eta}{\left(1-\beta^{2}\right) I^{2}(Z)}-\cdots\right]
$$

$I(Z)$: Ionization potential: Very roughly
$I \sim \frac{1}{2} m \alpha^{2} Z=13.6 Z \mathrm{eV}$
but is a complex Z function.

$$
\left(\alpha=\frac{1}{4 \pi \epsilon_{0}} \frac{e^{2}}{\hbar c}=\frac{1}{137}\right)
$$

It is important to note:

- function of β only.

© So is p / m or E / m, Ek/m

Fractional Energy Loss / r. 1

Lateral spread

- Source of spread
- Multiple scattering
- Pt at particle production (hadron int \& compton, brems, pair, inelastic scattering)
- Magnetic field, Electric field

Multiple Satt. $<\theta>\sim \frac{E_{s}}{E} \sqrt{t}$
After traversing 1 radiation length, spread becomes
$\sim X_{0}<\theta>=\frac{E_{s}}{E} X_{0}$
Typical energy is critical energy, E_{c},
so that we may measure the lateral spread in terms of Moliere unit:
$\frac{E_{s}}{E_{c}} X_{0} \sim 90 \mathrm{~m}$.
It is said we may use $X_{0} 2$ r.l above the observation depth.

Multiple Scattering

s VS Δz

- Fermi $(\Delta \vec{\theta}, \Delta \vec{r})$ Rossi text: High Energy Particles

Consts: PDB (Lynch \& Dahl, NIM B51(1991). But not recommended one.

- Goudsmit \& Saunderson $\Delta \vec{\theta}$ Phys. Rev. vol. 57 (1940)

Phys. Rev. vol. 58 (1940); there is a letter in between.
Difficult for numerical applications

- LeWiS $(\Delta \vec{\theta}, \Delta \vec{r})$ Phys. Rev. vol. 72 (1950). Formalism.

Difficult for numerical applications.

- Moliere $=>$ Bethe. $\Delta \vec{\theta}$ Phys. Rev. vol. 89 (1953)
physical translation. small angle approx. relaxed

Multiple Scattering

Many E.M theories: ready for use bef. 1960

But M.S theory continuously developed even in 2000s.

Where is difficulty ?

- Getting reliable DCS is difficult
- Partial Wave Analysis (of Schrödinger \&

Dirac Eq.) is thought to be most reliable, but above 1 MeV , more than $10^{\wedge} 4$ terms must be added and becomes unstable.

- Born approximation
- Eikonal approximation etc
(expression of atom)
- Nuclear size effect (finiteness of nucleus)
- F.Salvat: Phys. Rev. A43(1991)
- J.Fernandes-Varea, R.Mayol \&F.Salvat NIMB 82(1993)
- F.Salvat \& R.Mayol, CPC, 74(1993)
- R.Mayol \& F.Salvat, ATOMIC DATA AND NUCLEAR DATA TABLES 65, 55-154 (1997)
- F.Salvat, A,Jabloinski \& C.Powell, CPC 165 (2005)

-DCS to M.C.S

$\frac{\partial f}{\partial s}+\vec{d} \cdot \nabla f=N \int\left(f\left(s ; \vec{r}, \overrightarrow{d^{\prime}}\right)-f(s ; \vec{r}, \vec{d})\right) \frac{d \sigma(\theta)}{d \Omega} d \Omega$
$f(0, \vec{r}, \vec{d})=\frac{1}{\pi} \delta(\vec{r}) \delta(1-\cos \chi) \quad \chi$: polar angle of \vec{d}
Angular Disit: $F(s ; \chi)=\int f(s ; \vec{r}, \vec{d}) d \vec{r}$

$$
=\sum_{\ell=0}^{\infty} \frac{2 \ell+1}{4 \pi} \exp \left(-s / \lambda_{e l, \ell}\right) P_{\ell}(\cos \chi)
$$

\boldsymbol{P}_{ℓ} : Legendre Pol. $\boldsymbol{\lambda}_{e l, \ell}: \ell$-th transport m.f.p $P_{0}(x)=1, P_{1}(x)=x, P_{2}(x)=\left(3 x^{2}-1\right) / 2$
$\lambda_{e l, \ell}: \ell$-th transport m.f.p
ℓ-th Transport xs:

$$
\begin{aligned}
& \sigma_{e l, \ell} \equiv \int\left(1-P_{\ell}(\cos \theta)\right) \frac{d \sigma_{e l}}{d \Omega} d \Omega \\
& \left.N \lambda_{e l, \ell} \sigma_{e l, \ell}=1 \quad<\mu=\cos (\theta)\right) / 2 \\
& <\cos \chi>=\exp \left(-s / \lambda_{e l, 1}\right) \\
& <\cos ^{2} \chi>=\left(1+2 \exp \left(-s / \lambda_{e l, 2}\right)\right) / 3 \\
& <z>=2 \pi \int z f(s ; \vec{r}, \vec{d}) d \cos (\chi) d \vec{r}= \\
& \lambda_{e l, 1}\left(1-\exp \left(-s / \lambda_{e l, 1}\right)\right. \\
& <x^{2}+y^{2}>,<z \cos (\chi)>\text { etc } \\
& \text { function of } \quad \lambda_{e l, 1}, \lambda_{e l, 2}
\end{aligned}
$$

-Salvat, Fernandes, Mayol... (Spain) - Kawrakow, Bielajew... -Uerban

Mixed simulation of the multiple elastic scattering...
EBenedito, J.Fernandes, F.Salvat NIM B174(2001)
On the theory and simulation of multiple elastic scattering of electrons.
J.Fernandes, R.Mayol, J.Baro, F.Salvat. NIM B (1993).

Pedagogical including summary of G.S, Lewis, Moliere theories.
PENELOPE-2011; A code system for M.C simulation of electron and photon transport
F.Salvat, J.Fernandes, J.Sempau. Data Bank, NEA/NSC/DOC/(2011)5

Electron transport; lateral and longitudinal correlation algorithm.
I.Kawrakow, NIM B114 (1996)

On the condensed history technique for electron transport.
I.Kawrakow, A.Bielajew. NIM B147 (1998)

A Model for Multiple Scattering in Geant4
L.Urbán, CERN-OPEN-2006-077

- Mixed simulation 1

dE/dx

M.C.S

high E delta-ray hard large angle single scattering sampling individual event
low \mathbb{E} delta, excitation soft small angle multiple scant. macroscopic continuous process

Spain group: random-hinge method (蝶番)

Lateral spread Experimental problem: No test has been done over 2~3 M.U while we observe even at 10 M.U

Electric field

- Simple filed $(E(r, t)$: Specified by parameters
-Complex one: The user may supply a subroutine for giving $E(r, t)$.
- Test at almost no air hight, (B, E)
- electron 30 MeV

- Test at almost no air hight, (B, E)
- positron 30 MeV

$$
\begin{aligned}
& 10^{5} \mathrm{~V} / \mathrm{m} \\
& 3 \times 10^{4} \\
& 10^{4} \\
& 30^{3} \\
&
\end{aligned}
$$

- Test in air 10 MeV e-

- Test in air 200 GeV e-

- Test in air 200 GeV e-

7km.
incident

- Test in air 200 GeV e-

- In actual applications, it is important to
take into account the time information of electric field (duration time), as well as r-dependence.

