Particle accelerators and their medical applications

Varchaswi K S Kashyap

School of Physical Sciences

National Institute of Science Education and Research (NISER) Bhubaneswar

What are accelerators?

Accelerators are devices that increase the velocity/speed of objects at rest or in motion.

Accelerator | Driving Lessons Online UK (teachable.com)

Picture of several counter-weight trebuchets Source: Wikipedia

A screenshot in AOE2 from the internet

Are these accelerators?

A picture of an onager Source: <u>I Have You Now: The Onager, a double-</u> edged sword (armadaihaveyounow.blogspot.com)

ONAGER/MANGONEL

SLINGSHOT

Source: Wikipedia

Are these accelerators?

A picture of an onager as modelled in AOE2

Particle accelerators in physics and their need

- Development of particle accelerators was driven by the curiosity to probe more and more in to the constituents of matter
- De Broglie's principle is what guides the energy of particles needed to probe into matter
 Dimension to be probed
 1Å
 1 fm

$$\lambda = \frac{h}{p}$$

Dimension to be probed	1 Å (Atomic size)	1 fm (Nuclear size)
Energy of electron required	~150 eV	~ 1 TeV

Where λ is the wavelength, h is the Planck's constant and p is the momentum.

 Larger the momentum (Energy), lower is the wavelength and hence smaller is the object that can be probed

Have you come across any particle accelerators in your daily life?

Kinetic energy of a charged particle in an electric field

Ampere's law

Source: Jfmelero - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/in dex.php?curid=3634402

Saturday, 31-03-2023

Saturday, 31-03-2023

Solenoid

Solenoid

Types of accelerators

Electrostatic accelerators

- Cockroft Walton accelerator
- Van de Graaff accelerator
- Pelletron

Induction accelerators

- Induction Linear accelerator
- Betatron

Radio-Frequency (RF) accelerators

• RF Linac

- RF quadrupole
- Cyclotron
- Microtron
- Synchrotron

Cockroft – Walton accelerator

- Converts AC voltage to very high DC voltage
- Simple in principle and less bulky compared to transformers
- Voltages can be tapped at different levels

K.E.=qV

Van de Graaff accelerator

A Van de Graaff particle accelerator in a pressurized tank at Pierre and Marie Curie University, Paris (**Source:** Wikipedia, Copyright © 2004 David Monniaux)

$$\mathsf{K}.\mathsf{E}.=qV$$

- Voltages of the order of a few MV can be achieved.
- A high voltage supply provides charges to be transported to the metal dome
- Charges are collected in a metal dome over time
- The potential difference between the dome and the ground can be used to accelerate particles
- A Pelletron is very similar to the Van de Graaff having a metal belt with pellets instead of a rubber belt.

Linear accelerator

RF LINAC (Image credit: Wikipedia)

The <u>Stanford</u> <u>University</u> supercon ducting linear accelerator, housed on campus below the Hansen Labs until 2007. This facility is separate from <u>SLAC</u> (**Image credit:** Wikipedia)

INDUCTION LINAC (Image credit: INDUCTION, J De Mascureau, 1996)

RF LINAC	INDUCTION LINAC
Smaller length	Longer length
Higher acceleration gradient	Lower acceleration gradient
Requires lower power	Requires higher power
Low current and short pulse duration	High current and longer pulse duration

Linear accelerator (LINAC) contd.

RF LINAC configurations

Image credit: By Patrick87 - https://commons.wikimedia.org/w/index.php?curid=29590284

Medical LINAC

Image credit: Medical Linear Accelerators in Radiation Therapy, Presentation by Haijun Song, Ph.D. Dept. of Radiation Oncology Duke University Medical Cente

Medical LINAC configurations

RF power generator and waveguide are both in the gantry and the waveguide is directed straight towards the patient

Image credit: Treatment machines for external beam radiotherapy, E.B. Podgorsak, Department of Medical Physics, McGill University Health Centre, Montreal, Quebec, Canada

RF power generator is in the gantry stand and waveguide is in the gantry directed towards the target above the patient

Medical LINAC configurations contd.

Image credit:

Primary

Electron

Applicator

Collimator

Medical Linear Accelerators in Radiation Therapy, Presentation by Haijun Song, Ph.D. Dept. of Radiation **Oncology Duke University Medical** Centre

Image credit: Cyclotron (gsu.edu)

Image credit: Hammer Throw -How to Play? (tutorialspoint.co m)

Lawrence's 60-inch cyclotron, with magnet poles 60 inches (5 feet, 1.5 meters) in diameter, at the <u>University of California Lawrence Radiation</u> <u>Laboratory</u>, Berkeley, in August, 1939. **Image credit:** Wikipedia

What to do if particle becomes relativistic?

Iso-cyclotron (Isochronous)

Keep frequency constant and vary the magnetic field

Synchro-cyclotron

Keep magnetic field constant and vary the frequency

What to do if particle becomes relativistic?

Iso-cyclotron (Isochronous)

Keep frequency constant and vary the magnetic field

Alias: Azimuthal varying field cyclotron

Image credit: http://www.geology.wisc.edu/~johnf/g777/Misc/chap15.pdf

What to do if particle becomes relativistic?

- Higher energy achievable
- Lower average beam current
- Compact dimension

Synchro-cyclotron

Keep magnetic field constant and vary the frequency

Layout of a cyclotron complex for proton therapy

Image credit: Accelerators for proton therapy, Presentation by, Marco Schippers, PSI - JUAS

PSI

What if both the frequency and magnetic field can be changed?

Synchrotron

Image credit: Particle Accelerator Physics, Helmut Wiedemann, 4th edition, Springer

Particle accelerators and medical use

Particle	Accelerator	Energy	Use
Electron	LINAC	~6-25 MeV	Cancer treatment
X-rays	LINAC	~6 MeV	Cancer treatment
	Synchrotron	~100s of keV	Imaging - coronary angiography, bronchography, mammography, computed tomography, x-ray microscopy
Proton	Cyclotron	~20-100 MeV	Radioactive assay preparation for PET, SPECT scanning
	Synchrocyclotron	~250 MeV	Cancer treatment
Carbon	Synchrotron	~400 MeV/u	Cancer treatment

How do you get free electrons?

Particle sources?

Photocathode based electron source.

Image credit: Electron sources for accelerators Carlos Hernandez-Garcia, Patrick G. O'Shea, and Marcy L. Stutzman, Physics Today, February 2008 (Volume 61, Issue 2).

Penning ion source

Image source: electron and ion sources for particle accelerators R. Scrivens

Thank you.

Hope you've all been accelerated!!

Some questions to think about

- Q1: Can you design a multistage accelerator using the gravitational force?
- **Q2:** Is it possible to calculate the electric field at the centre of a Toroid?
- Q3: Suppose you want to build a LINAC to accelerate protons to energies of 1 TeV. How long would it have to be?
- **Q4:** What is fundamental? Force/field or the particle charge?

