Hadron structure from lattice QCD

Constantia Alexandrou

Probing baryon weak decays Warsaw, 6 March 2023

Outline

***Introduction**

- State-of-the-art lattice QCD simulations
- *** 3D structure of the nucleon**
 - ➡Electromagnetic form factors and strangeness of the nucleon
 - ⇒Axial form factors

Direct computation of parton distributions (talk by K. Cichy) ***Conclusions**

Quantum ChromoDynamics (QCD)

*****QCD-Gauge theory of the strong interaction

*Lagrangian: formulated in terms of quarks and gluons

$$\mathcal{L}_{QCD} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\,\mu\nu} + \sum_{f=u,d,s,c,b,t} \bar{\psi}_{f} (i\gamma^{\mu}D_{\mu} - m_{f}) \psi_{f} \qquad D_{\mu} = \partial_{\mu} - ig\frac{\lambda^{a}}{2} A^{a}_{\mu}$$

Harald Fritzsch

Murray Gell-Mann

Phys. Lett. 47B (1973) 365

Heinrich Leutwyler

Lattice QCD

Status of current simulations

Status of current simulations

* A number of collaborations has generated gauge ensembles with physical values of the u/d, s and c quarks

** Algorithmic improvements needed to simulate for a<0.05 fm due to critical slow down in Markov chain Monte Carlo (long autocorrelations) —> new sampling algorithms, e.g. flow-based algorithms

G. Kanwar *et al.*, Phys. Rev. Lett. 125 (2020) 121601, arXiv:2003.06413; D. Boyda *et al.*, Phys.Rev.D 103 (2021) 074504, arXiv: 2008.05456; M. S. Albergo *et al.*, Phys.Rev.D 104 (2021) 114507, arXiv:2106.05934, J. Finkenrath arXiv:2201.02216

Gauge ensembles generated by ETMC

C. A. et al. (ETMC), "Simulating twisted mass fermions at physical light, strange and charm quark masses" Phys. Rev. D98 (2018) 054518

Systematics & Challenges

***** Renormalisation

Non-perturbatively with improvements e.g using perturbative subtraction of lattice artefacts

* Ground-state identification

Cross-check (one-, two- and three-state fits, summation) Two-particle state contribution complicate the identification of the ground state

* In what follows we assume isospin symmetry i.e. up and down quarks have equal mass, and neglect EM effects

Low-lying hadron spectrum

****** BMW collaboration determined the low-lying hadron masses, S. Durr *et al.*, Science 322 (2008) 1224
 as well as the mass splittings
 Sz. Borsanyi *et al.*, Science 347 (2015) 1452

	mass splitting [MeV]	QCD [MeV]	QED [MeV]
$\Delta N = n - p$	1.51(16)(23)	2.52(17)(24)	-1.00(07)(14)
$\Delta\Sigma=\Sigma^\Sigma^+$	8.09(16)(11)	8.09(16)(11)	0
$\Delta \Xi = \Xi^ \Xi^0$	6.66(11)(09)	5.53(17)(17)	1.14(16)(09)
$\Delta D = D^{\pm} - D^0$	4.68(10)(13)	2.54(08)(10)	2.14(11)(07)
$\Delta \Xi_{cc} = \Xi_{cc}^{++} - \Xi_{cc}^{+}$	2.16(11)(17)	-2.53(11)(06)	4.69(10)(17)
$\Delta_{\rm CG} = \Delta N - \Delta \Sigma + \Delta \Xi$	0.00(11)(06)	-0.00(13)(05)	0.00(06)(02)

Lattice QCD reproduces the low-lying hadron masses and mass splittings

Recent results on the low-lying masses

*****ETMC: only using physical point ensembles —> no uncontrolled systematics due to chiral extrapolation

*****RQCD: extrapolated to the physical pion mass

Baryonic semi-leptonic decays

Write transition matrix elements $H \to H' l \bar{\nu}_l$ of in term of hadronic J^h and leptonic J^l components

$$\mathcal{M}_{H\to H'l\bar{\nu}} = \frac{G_F}{\sqrt{2}} \mathcal{C} \langle H'|J^h_{\mu}|H \rangle \langle l|J^{\mu,l}|\bar{\nu}_l \rangle$$

Relevant Cabibbo angle

V-A structure and for u, d and s quarks and each current we have $\Delta S=0$ and $\Delta S=1$ components

$$\langle H'|J^h_{\mu}|H\rangle = \langle H'|V_{\mu} - A_{\mu}|H\rangle$$

The matrix elements in Euclidean space are written as

$$\langle H'(\vec{p}',s')|V_{\mu}|H\rangle(\vec{p},s) = \bar{u}_{H'}(\vec{p}',s') \left[\gamma_{\mu}f_{1}(q^{2}) + i\sigma_{\mu\nu}q_{\nu}\frac{f_{2}(q^{2})}{M_{H} + M_{H'}} - q_{\mu}\frac{f_{3}(q^{2})}{M_{H} + M'_{H}} \right] u_{H}(\vec{p},s)$$

$$\langle H'(\vec{p}',s')|A_{\mu}|H\rangle(\vec{p},s) = \bar{u}_{H'}(\vec{p}',s') \left[\gamma_{\mu}\gamma_{5}g_{1}(q^{2}) + i\sigma_{\mu\nu}q_{\nu}\gamma_{5}\frac{g_{2}(q^{2})}{M_{H} + M_{H'}} - q_{\mu}\gamma_{5}\frac{g_{3}(q^{2})}{M_{H} + M'_{H}} \right] u_{H}(\vec{p},s)$$

• At q²=0 we get the vector and axial coupling constants: $f_1(0) = g_V$ $g_1(0) = g_A$

- For diagonal matrix elements the form factors $f_3(q^2)$ and $g_2(q^2)$ vanish as they do in the SU(3) limit

 $\begin{array}{cccc} n \rightarrow pe^{-}\bar{\nu}; & \Sigma^{-} \rightarrow ne^{-}\bar{\nu}; & \Xi^{-} \rightarrow \Lambda e^{-}\bar{\nu}; & \Lambda \rightarrow pe^{-}\bar{\nu}; & \cdots \\ & & & \\ \end{array}$ Most studied in lattice QCD $\begin{array}{cccc} \Sigma^{-} \rightarrow ne^{-}\bar{\nu}; & \Sigma^{-} \rightarrow ne^{-}\bar{\nu} \\ & & \\ S. \ Sasaki, 1209.6115; & & \\ M. \ Goeckeler \ et \ al. \ (QCDSF) \ 1101.2806; \\ A. \ N. \ Cooke \ et \ al., \ 1311.4916 \ and \ 1212.2564; \ P.E. \ Shanahan \ et \ al., \ 1508.06923. \end{array}$

Nucleon matrix elements

$$\langle N(\vec{p}',s')|V_{\mu}|N(\vec{p},s)\rangle = \bar{u}_{N}(\vec{p}',s') \begin{bmatrix} \gamma_{\mu}F_{1}(q^{2}) + i\frac{\sigma_{\mu\nu}q_{\nu}}{2M_{N}}F_{2}(q^{2}) \end{bmatrix} u_{N}(\vec{p},s)$$

$$Dirac Pauli$$

$$G_{E}(q^{2}) = F_{1}(q^{2}) + \frac{q^{2}}{2M_{N}}F_{2}(q^{2}) \qquad G_{M}(q^{2}) = F_{1}(q^{2}) + F_{2}(q^{2})$$

$$N(\vec{p}',s')|A_{\mu}|N(\vec{p},s)\rangle = \bar{u}_{N}(\vec{p}',s') \begin{bmatrix} \gamma_{\mu}\gamma_{5}G_{A}(q^{2}) - \frac{q_{\mu}\gamma_{5}}{2M_{H}}G_{P}(q^{2}) \end{bmatrix} u_{N}(\vec{p},s)$$

Our work:

***** Nucleon electromagnetic and axial form factors

\Delta transition form factors:

- Previous work not using state-of-the-art ensembles and Delta stable
- Formalism for unstable Delta developed, work is ongoing

*Delta electromagnetic and axial form factors - only done assuming stable Delta and older ensembles

Charges of baryons

• Readily accessible in lattice QCD

• Only recently we have results directly at the physical point (i.e. simulations with $m_{\pi} \sim 135 + /-10 \text{ MeV}$)

Nucleon isovector charges

(1) Lattice QCD results on g_A consistent with experimental value

Nucleon isovector (u-d) axial and tensor charges $_{(\vec{x}_{s}, t_{s})}$

*****Only connected contributions

- Use three gauge ensembles generated using physical values of the light, 1.34 strange and charm quarks:
 - B64-ensemble: 64³ x 128, a~0.08 fm
 - C80-ensemble: 80³x160, a~0.07 fm
 - D96-ensemble:96³x192, a~0.06 fm

δ

1.30

1.26

∣ ⊃⊄ 1.28

σ

1.285(45)

MMM

0.003 0.004

a² [fm²]

 $(\vec{x}_{\rm ins}, t_{\rm ins})$

0.005

0.006

 $(\vec{x_0}, t_0)$

Precision results on the isovector tensor charge - input for phenomenology e.g. JAM3D-22 analysis
Phys.Rev.D 106 (2022) 3, 034014, arXiv:2205.00999

Flavor diagonal tensor charge

*Evaluate both connected and disconnected contributions

*Obtain flavor diagonal tensor charge for the first time in the continuum using only physical point ensembles - input for phenomenology

Only calculation in the continuum limit directly at the physical point

(2) Precision era of lattice QCD for charges including flavor diagonal

Nucleon scalar charge

*Perform a similar analysis for the scalar charge - important input for direct dark matter searches

*Scalar charge is also directly related to the nucleon σ -terms or quark content $\sigma_q = m_q \langle N | \bar{q}q | N \rangle$

Electromagnetic form factors

Continuum limit

Disconnected (u+d)

0.05 $0.16 - G_E^{u+d}(Q^2)$ $G_M^{u+d}(Q^2)$ 5 $G_M^{u-d}(Q^2)$ 1.0 -G^{u-d}(Q²) 0.00 cB64 Đ cC80 cD96 0.14 -0.05 4 0.12 0.8 -0.10 0.10 3 -0.15 0.6 0.08 -0.20 0.06 2 0.4 -0.25 0.04 cB64 -0.30 0.2 0.02 cC80 T cD96 Ī -0.35 0.00 L 0.0 0.2 0.4 0.0 0.2 0.6 0.4 0.6 0.0 L 0.0 0└─ 0.0 0.2 0.8 1.0 0.2 0.6 1.0 0.4 0.6 0.4 0.8 Q^2 [GeV²] Q^2 [GeV²] Q^2 [GeV²] Q^2 [GeV²]

Proton and Neutron EM form factors compared to experiment

Strangeness of the nucleon

Sea quark effects can be accurately determined for EM form factors —> provide precise input to experiments

B64-ensemble: $64^3 \ge 128$, a~0.08 fm

Axial and induced pseudoscalar form factors

Extract from
$$\longrightarrow \langle N(p',s')|A_{\mu}|N(p,s)\rangle = \bar{u}_{N}(p',s') \left[\gamma_{\mu}G_{A}(Q^{2}) - \frac{Q_{\mu}}{2m_{N}}G_{P}(Q^{2})\right]\gamma_{5}u_{N}(p,s)$$

lattice QCD $\longrightarrow \langle N(p',s')|P_{5}|N(p,s)\rangle = G_{5}(Q^{2})\bar{u}_{N}(p',s')\gamma_{5}u_{N}(p,s) \qquad q^{2}=-Q^{2}$

***** At the pion pole we get the pion nucleon coupling: $g_{\pi NN} \equiv G_{\pi NN} (Q^2 = -m_{\pi}^2)$

$$\lim_{Q^2 \to -m_{\pi}^2} (Q^2 + m_{\pi}^2) G_P(Q^2) = 4m_N F_{\pi} g_{\pi N N}$$

and
$$g_{\pi NN} = m_N G_A(-m_\pi^2)/F_\pi \xrightarrow{\mathbf{m}_\pi \to \mathbf{0}} \frac{m_N}{F_\pi} g_A$$

Analysis of excited states

We allow the first excited state to be different in the two- and three-point functions, O. Baer, Phys. Rev. D 99, 054506 (2019).

*Extract first excited state from the zero component of the axial-vector current

 $\Delta M_1 {\sim} 800 \; MeV$

072002, 1905.06470

Axial form factor using the B64 ensemble

***** Fit the Q² dependence using a dipole and z-expasion

$$G_A(Q^2) = \frac{g_A}{(1+Q^2/m_A^2)^2} \quad \text{or} \quad G(Q^2) = \sum_{k=0}^{k_{\text{max}}} a_k z^k(Q^2) \text{ and } z(Q^2) = \frac{\sqrt{t_{\text{cut}} + Q^2} - \sqrt{t_{\text{cut}}}}{\sqrt{t_{\text{cut}} + Q^2} + \sqrt{t_{\text{cut}}}}$$

Using the z-expansion we find: $m_A = 1.169(72)(27) \text{ GeV}$ $\sqrt{\langle r_A \rangle^2} = 0.585(36)(14) \text{ fm}$

Quark flavour decomposition of GA

Contribution of disconnected diagrams

- Significant contribution of disconnected to u+d combination
- Negative disconnected contribution: subtracts from connected
- Good signal for strange contribution: clearly non-zero and negative

Quark flavour decomposition of G_P

Contribution of disconnected diagrams

- Significant contribution of disconnected to u+d combination
- Negative large disconnected contribution: subtracts from connected
- Large negative strange quark contribution

Charm quark contributions

*****Clearly non-zero negative contributions for both axial form factors

(3) Sea quarks effects clearly seen on the form factors

PCAC and pion pole dominance (PPD) at the continuum limit

In agreement with other lattice studies e.g. RQCD and PNDME

(4) Both PCAC and PPD are recovered in the continuum limit

Conclusions

(1) Lattice QCD results converge to the experimental values of e.g. nucleon axial charge, form factors, etc

- (2) A number of accurate results with controlled systematics on less known quantities provide valuable input for searches of new physics, e.g nucleon scalar and tensor charges including flavor diagonal, strangeness, ...
- (3) Lattice QCD reveals clearly strange and charm effects in the nucleon Direct computation of PDFs is a very active field
- (4)Continuum limit is important for recovering important relations
- (5) Same approaches can be used for other baryons and for non-diagonal matrix elements

Backup slides

