Multihadronic charm baryon decays with hyperons

Joan Ruiz-Vidal

Lund University

March 7, 2023

Probing baryon weak decays - from experiment to theory Warsaw, 6–7 March 2023

Joan Ruiz Vidal

Credits

CERN Louis Henry

LHCb analyses of $H_{c} \rightarrow \Lambda h(h)(h)$ being developed by a broad team at

University of Valencia - IFIC Fernando Martínez Vidal, Sergio Jaimes, Miguel Rebollo, JRV (formerly)

University of Milano - INFN Nicola Neri, Andrea Merli, Giorgia Tonani

University of Chinese Academy of Sciences Jinlin Fu, Chuangxin Lin, Ziyi Wang, Jian-Yu Zhang

Joan Ruiz Vidal

Introduction: hadronic modes with Λ s

- Essentially unexplored both for theory and experiment
- Full of **physics opportunities**: polarimetry, spin correlations, spectroscopy in amplitude analyses, CPV, ...
- Several analyses in progress at LHCb. CS modes for Run3+

Interest originally triggered by the measurement of **electric and magnetic dipole moment** of As crossing the magnet (**T-tracks**). More at the end.

Joan Ruiz Vidal

What has been done – previous measurements (I)

First observations in the 80s and 90s CLEO Phys.Rev.Lett. 55 (1985) 923 CLEO Phys.Lett.B 365 (1996) 431 ARGUS Phys.Lett.B 247 (1990) 121

What has been done – previous measurements (II)

- Precise measurements of branching fractions, often wrt $\mathcal{B}(\Lambda_c^+ \to pK^-pi^+)$ or $\mathcal{B}(\Xi_c^+ \to \Xi^-\pi^+\pi^+)$ FOCUS Phys.Lett.B 571 (2003) 139 Belle Phys.Lett.B 605 (2005) 237 BESIII Phys.Rev.Lett. 116 (2016) 5, 052001 Belle Phys.Rev.D 103 (2021) 5, 052005
- Higher yields allow tighter selections to increase the purity: first Dalitz analyses FOCUS Phys.Lett.B 624 (2005) 22 Belle Phys.Rev.Lett. 122, 072501 (2019) Belle 2211 11151
- Angular distributions not exploited. Only some decay-asymmetry parameters of 2-body modes

 - ▶ $\Lambda_c^+ \to \Lambda \pi^+$ (Belle 2208.08695, and many others) ▶ $\Xi_c^0 \to \Xi^- \pi^+$ (Belle PRL 127 (2021) 12, 121803) ▶ $\Xi_c^0 \to \Lambda \bar{K}^{*0}$ (Belle JHEP 06 (2021) 160)

What can be done – physics opportunities (I)

Proton angular distribution

• A spin accessed through its self-analysing decay $\Lambda \to p\pi^-$.

$$\frac{dW}{dcos\theta_{p}d\phi_{p}} = \frac{1}{4\pi} \left[1 + \alpha_{\Lambda}\mathsf{P}_{\Lambda} \cdot \mathsf{k} \right] \qquad \frac{dW}{dcos\theta_{p}} = \frac{1}{2} \left[1 + \alpha_{\Lambda}\mathsf{P}_{\Lambda,z}\cos\theta_{p} \right]$$

•
$$\Lambda$$
 polarization: $P_{\Lambda} = (P_{\Lambda,x}, P_{\Lambda,y}, P_{\Lambda,z})$

- proton dir. in the Λ helicity rest frame: $\mathbf{k} = (\cos \phi_p \sin \phi_p, \sin \phi_p, \sin \phi_p, \cos \theta_p)$
- Charm baryon decay asymmetry α
 - ► Two-body decays (e.g. $\Lambda_c^+ \rightarrow \Lambda \pi^+$): $P_{\Lambda,z} = \alpha_{\Lambda_c^+}$
 - Multibody decays: consider effective decay asymmetry of $H_c \to \Lambda X$, dependent on the momentum transfer $q^2 = (p_{H_c} p_{\Lambda})^2$. Naive "leading order" diagram of $\Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^-$ as $\Lambda_c^+ \to \Lambda W^+$

$$\begin{array}{c} & & & \\ &$$

where $H_{\lambda_A\lambda_W}$ are the helicity amplitudes with $\lambda_\Lambda=\pm\frac12$ and $\lambda_W=0,\pm1$

PRD 43 (1991) 3599

(e) $\Lambda_e^+ \rightarrow \Lambda \pi^+ \pi^- \pi^+$

Joan Ruiz Vidal

What can be done – physics opportunities (II)

CP violation

• Independently of the interpretation / parametrization, different $\alpha(q^2) \neq -\overline{\alpha}(q^2)$ would signal CPV in the decay,

$$egin{aligned} &\mathcal{A}_{CP}(q^2) = rac{lpha(q^2) + \overline{lpha}(q^2)}{lpha(q^2) - \overline{lpha}(q^2)} pprox \mathcal{A}_{CP,\Lambda} + \mathcal{A}_{CP,H_c}(q^2) \ &\mathcal{A}_{CP,\Lambda} = rac{lpha_{\Lambda} + lpha_{ar{\Lambda}}}{lpha_{\Lambda} - lpha_{ar{\Lambda}}} \;, \quad \mathcal{A}_{CP,H_c}(q^2) = rac{lpha_{H_c}(q^2) + \overline{lpha}_{H_c}(q^2)}{lpha_{H_c}(q^2) - \overline{lpha}_{H_c}(q^2)} \end{aligned}$$

 $\bullet\,$ Similarly to the observation of CPV in D meson decays, difference of direct decay asymmetries between CF / SCS as

$$\Delta A_{CP} = A_{CP}(SCS) - A_{CP}(CF)$$

• **T-odd triple products** in four-body modes $P \rightarrow abcd$ PLB 749 (2015) 104

$$A_{T} = \frac{\Gamma(C_{T} > 0) - \Gamma(C_{T} < 0)}{\Gamma(C_{T} > 0) + \Gamma(C_{T} < 0)}, \text{ where } C_{T} = \boldsymbol{p}_{a} \cdot (\boldsymbol{p}_{b} \times \boldsymbol{p}_{c}).$$

What can be done – physics opportunities (III)

Complete angular analysis

- Accounting for all angular variables, extract additional decay-asymmetry parameters and charm baryon polarization
- Test polarization transfer $H_c \rightarrow \Lambda$ induced by *missing* intermediate rest frame PRC 95 (2017) 5, 054902

Amplitude analysis and spectroscopy

- Combining all information of invariant masses + angular distribution = build full amplitude model
- Predictions of pentaquark state Σ^* as a broad $(\Lambda \pi^{\pm})$ resonance with mass $m(\Sigma^*) \approx 1380 \text{ MeV}$ and $J^P = \frac{1}{2}^-$. Entangled with the known $\Sigma(1385)^{\pm} (\frac{3}{2}^-)$. Angular variables crucial. nucl-th/0011071, hep-ph/0403210, 1001.0805
- Structures in $m(\Lambda \pi^{\pm})$ may also be produced from $\bar{K}N$ re-scattering 2211.11151

What is being done (at LHCb)

• Several of these channels being tackled by different groups at LHCb

- $\begin{array}{l} \Xi_c^0 \to \Lambda K^- \pi^+ \\ \bullet \ \Lambda_c^+ \to \Lambda \pi^+ \pi^+ \pi^- \\ \bullet \ \Xi_c^0 \to \Xi^- \pi^+ \pi^+ \pi^- \\ \bullet \ \Xi_c^+ \to \Xi^- \pi^+ \pi^+ \\ \bullet \ \Xi_c^0 \to \Xi^- \pi^+ \end{array}$
- Steps to harvest Run2 data (stripping, trigger) started in 2017
- Challenging reconstruction
 - \triangleright Long-lived \land (and Ξ^-) \triangleright relatively soft π^{\pm}, K^{\pm}
 - ▷ Huge combinatorial background from *pp* collisions

 $\Xi_c^0 \to \Lambda K^- \pi^+$

- Higher yields than previous experiments. Run2 signal yield ~120k
- P_Λ studied in bins of phase space: (quasi-2-body; interferences; nonresonant) significant dilution / enhancements
- Very rich resonant structure: aim for a full amplitude analysis

 $\Xi_c^0 \to \Lambda K^- \pi^+$

- Higher yields than previous experiments. Run2 signal yield $\sim 120k$
- P_Λ studied in bins of phase space: (quasi-2-body; interferences; nonresonant) significant dilution / enhancements
- Very rich resonant structure: aim for a full amplitude analysis

$$\Lambda_c^+ \rightarrow \Lambda \pi^+ \pi^+ \pi^-$$

0	Signal	vie	ds
-	Jightan	yici	us

0 ,				
Year	DD	LL	Total yield	
16	49k	81k	130k	
17	70k	95k	165k	
18	325k	434k	759k	
All	444k	610k	1.05M	

- P_Λ as a function of q² = (p_{Λ⁺_c} p_Λ)²: large dependency in P_{Λ,z}(q²)
- Rather simple dalitz plot. Large statistics allow clean search for new states and possible K
 KN structure (see intro)
- Full angular analysis in progress. Effective decay parameters in bins of PS

Joan Ruiz Vidal

Multihadronic charm baryon decays

March 7, 2023 11 / 28

 $\Xi_c^0\to \Xi^-\pi^+\pi^+\pi^-$

- Especially difficult reconstruction. Soft pions and huge backgrounds from *pp*
- Analysis only starting
- Few events with inclusive Ξ[−] Turbo.
 Stripping data with 2018 trigger promising

- Large signal yields especially in 2018, with dedicated trigger
- Plans for a full angular analysis in bins of phase space

Year	Signal yield	
16	19k	
17	32k	
18	218k	
Total	270k	

$\Xi_c^0\to \Xi^-\pi^+$

- Complete angular analysis in progress
- 2-body decay: more direct interpretation of asymmetry parameters
- Signal yield from turbo (17/18): \sim 35k (25k DDL + 10k LLL)

Original motivation Physics with T tracks: first results

Electric dipole moment (EDM)

Classical definition Quantum systems

$$\delta = \int \boldsymbol{r}
ho(\boldsymbol{r}) d^3 r \qquad \delta = d\mu_N \frac{\boldsymbol{S}}{2}$$

Interaction Hamiltonian

$$H = -\boldsymbol{\delta} \cdot \boldsymbol{E} \quad \begin{array}{c} \stackrel{l}{\longrightarrow} & +\boldsymbol{\delta} \cdot \boldsymbol{E} \\ \stackrel{P}{\longrightarrow} & +\boldsymbol{\delta} \cdot \boldsymbol{E} \end{array}$$

The EDM violates separately T and P \Rightarrow **CP violation**

Joan Ruiz Vidal

Spin precession in external **B** field

$$\frac{d\boldsymbol{s}}{dt} = \boldsymbol{s} \times \boldsymbol{\Omega} , \quad \boldsymbol{\Omega} = \frac{\mu_N}{\hbar} \left[\boldsymbol{g} \left(\boldsymbol{B} - \frac{\gamma - 1}{\gamma} (\boldsymbol{u} \cdot \boldsymbol{B}) \boldsymbol{u} \right) + \boldsymbol{d} \beta \boldsymbol{u} \times \boldsymbol{B} \right].$$

Experiment concept at LHCb

- Large initial longitudinal pol. from weak decays *e.g.* $\Lambda_b^0 \rightarrow \Lambda J/\psi$, $|\mathbf{s}_{\Lambda}| \approx 100\%$ $\Lambda_c^+ \rightarrow \Lambda \pi^+$, $|\mathbf{s}_{\Lambda}| \approx 84\%$
- Reconstruct $\Lambda \rightarrow p\pi^-$ with T tracks. Fit angular distribution
- Compare polarization before and after the magnet

State of the art

Previous experiment at Fermilab

 $\delta_{\Lambda} < 1.5 \cdot 10^{-16} \text{ ecm}$

PRD 23 (1981) 814

- Proton beam on beryllium target
- 8.5% polarization
- Integrated field $\int Bd\ell =$ $10 - 15 \,\mathrm{Tm}$
- $3 \cdot 10^6$ events

 $\mu_{\Lambda} = (-0.6138 \pm 0.0047) \ \mu_N$

Λ production channels: selection criteria

- Weak decays
- Charged particles in the final state

Direct Λ from baryon decays

AL (= 6 1)
N_{Λ} (5 fb ⁻¹)
3.83 ×10 ¹¹
1.63×10^{11}
9.78×10^{10}
6.73 ×10 ¹⁰
1.03×10^{10}
5.95×10^{9}
7.27 ×10 ¹¹

- Known branching fractions
- Ignoring strong resonances

Intermediate Ξ^-

Channel		N_{Λ} (5 fb ⁻¹)
$\Xi_c^0 ightarrow \Xi^- \pi^+ \pi^+ \pi^-$	$\Xi^- ightarrow \Lambda \pi^-$	1.18×10^{12}
$\Xi_c^0 \rightarrow \Xi^- \pi^+$	$\Xi^- ightarrow \Lambda \pi^-$	3.57×10^{11}
$\Xi_c^+ \rightarrow \Xi^- \pi^+ \pi^+$	$\Xi^- ightarrow \Lambda \pi^-$	3.03×10^{11}
$\Lambda_c^+ ightarrow \Xi^- K^+ \pi^+$	$\Xi^- ightarrow \Lambda \pi^-$	3.20×10^{10}
$\Xi_c^0 ightarrow \Xi^- K^+$	$\Xi^- ightarrow \Lambda \pi^-$	1.00×10^{10}
Sum		1.88 ×10 ¹²

Run II (2015-2018): $\sqrt{s}=13\,\text{TeV}$, $\mathcal{L}=5~\text{fb}^{-1}$

analyses ongoing

Sensitivity Reach

March 7, 2023 20 / 28

Reconstruction challenges

Low momentum resolution

Foremost source of challenges

Track extrapolation

Through intense and inhomogeneous magnetic field

Vertex efficiency Bottleneck of reconstruction efficiencies

misID Λ/K_S^0 PID information not available out of the box

Crossing tracks Bent tracks produce a fake vertices

Reconstruction challenges

Low momentum resolution Foremost source of challenges

Track extrapolation Through intense and inhomogeneous magnetic field

Vertex efficiency Bottleneck of reconstruction efficiencies

misID Λ/K_S^0 PID information not available out of the box

Crossing tracks Bent tracks produce a fake vertices

Feasibility demonstrated

CERN-LHCb-DP-2022-001, arXiv:2211.10920

$$\Lambda_b^0 \to \Lambda J/\psi$$

$\sigma_{m(\Lambda)} \approx 8 \,\mathrm{MeV}$ $\sigma_{m(\Lambda_b^0)} \approx 41 \,\mathrm{MeV}$

Mass peaks with reconstructed and combined T tracks at LHCb 6140 $\Lambda_b^0 \rightarrow \Lambda J/\psi$ signal candidates. Run2 data

A different probe of CPV with heavy baryons: Charm baryon EDMs

Joan Ruiz Vidal

Channelling in bent crystals

- Very short-lived Λ_c^+ (\sim 5cm) \rightarrow need large EM field in small space ($\sim 10^3$ T)
- E field between atomic planes

• Precession induced by the net EM field

$$m{s} pprox s_0 \left(rac{m{d}}{m{g}-2} (\cos \Phi -1), \ \cos \Phi, \ \sin \Phi
ight)$$

$$\Phi \approx \frac{\mathbf{g}-2}{2} \gamma \theta_{\mathbf{C}} \approx \pi$$

see e.g. EPJ C 77 (2017) 828

Layout for the LHC

Sensitivity with **two years** of data taking (10^{13} PoT)

- **EDM** sensitivity $\sigma_{\delta} \approx 4 \cdot 10^{-16} ecm$
- First measurement of Λ_c^+ (Ξ_c^+) magnetic moment, $\sigma_{g-2} \approx 2 \times 10^{-2}$

PRD 103 (2021) 7, 072003

Charm EDM in BSM theories

Standard Model has its leading contribution at 3-loop level

Indirect bounds on charm EDM

 $d_c < 1.5 \times 10^{-21} \text{ ecm}$ PRD 101, 115010 (2020)

Baryon EDM in non-perturbative QCD

- Scarce theory literature on the EDM of Λ⁺_c (or c,b-baryons) (Ünal, Meißner, JHEP 01 (2021) 115; de Vries, Hanhart, Severt, Ünal, Meißner, PRD 105 (2022) 5, 055026)
- Estimations (NDA) point to $d_{\Lambda_c^+} \sim d_c \pm rac{e}{4\pi} \widetilde{d}_c$
- **Theoretical uncertainties** are key to understand the constraining power of heavy baryon EDM searches

Conclusion

- LHCb has the largest sample ever of charm decays
- Angular information opens possibilities for many potential observables: polarization, decay asymmetries, CPV, T-odd spin correlations, spectroscopy of new states, ..
- Many measurements on the way for multihadronic modes with As

• Lack of theory predictions. Challenging calculations with fully hadronic multibody modes

