

Belle II (Belle) perspectives for Baryon Physics

A. Bożek, IFJ Kraków

for Belle II/Belle

- Recent results from Belle II on Charmed baryon lifetime
- 2. Belle II perspective based on Belle results
 - Charmed baryon spectroscopy,
 - Other baryon spectroscopy,
 - CP violation in Charmed baryon

SuperKEKB and Belle II: 2nd generation "Super B Factory"

Belle II luminosity

Previous record instantaneous luminosity 2.1 x 10³⁴ cm⁻²s⁻¹ Belle integrated luminosity 1000 fb-1 BaBar integrated luminosity 500 fb-1

Peak instantaneous luminosity: 4.7 x 10³⁴ cm⁻² s⁻¹ (world record)

Charmed Baryon Production at B-Factories

- Baryons produced via fragmentation
- Charmed baryons rather direct
- Hyperons later stage of fragmentation

- B meson is efficiently produced via Y(4S)
- Once bottom is produced, it favorably decays into charm

Huge statistics

Lifetime measurments of weakly-decaying charmed baryons

Charmed baryon lifetimes are difficult to describe because of the interplay of different decay diagrams including external W-decay spectator diagrams and W-exchange diagrams.

cud cus PDG 2018 $\Xi_c^{\ 0}$ Λ_c^+ LHCb Semileptonic $\Xi_c^{\ 0}$ Q_c^0 LHCb Prompt LHCb Comb. 100 200 300 400 500 Lifetime [fs]

Recent LHCb results have turned around the lifetime hierarchy which had been unchallenged for many years

$$\tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0)$$

Belle II Lifetime Measurements

Precise lifetime measurements by Belle II

- Upgraded vertex detector
 - More robust tracking
 - Better vertex resolution

Pixel Detector (PXD)

Not fully instrumented in the current dataset (Will be after present shutdown)

New Drift Chamber with longer lever arm than Belle . 60,0000 parameters used for the alignment of the 14336 wires

Beamspot effectively point-like in x,y and small in z

Resolution in pathlength 40 µm (around 87 ps)

• Luminous region dimensions (x/y/z) at:

Belle II: 10/0.2/250 μm Belle : 100/1/6,000 μm

Procedure to measure Λ_c^+ lifetime

- Promptly produced Λ_c^+ candidates from continuum $e^+e^- \rightarrow c\overline{c}$ events.
- $\Lambda_c^+ \to pK^-\pi^+$ are reconstructed. Charge conjugate decays are always implied.
- Decay time (t) is calculated using the displacement of the Λ_c^+ decay vertex from the e^+e^- interaction point (L), projected along the direction of the momentum (p) of the Λ_c^+ , while m is its mass.

$$t = \frac{m}{p}(\overrightarrow{L} \cdot \hat{p})$$

- The position and size of the interaction region is determined using e⁺e⁻ → u⁺u⁻ events.
- For the Λ_c^{+} candidates, the VXD provides a decay-length resolution of 40 μm , corresponding to an average decay time resolution of 87 fs for an average decay length of 96 μm .
- σ_t is the uncertainty on t, is also an important variable in the following analyses.

$\Lambda_c^+ o p K^- \pi^+$ decays at high momentum (not from B decays)

Use $\Lambda_c^+ \to p K^- \pi^+$ decays at high momentum (not from B decays)

104	Belle II
10 ³	$\int L dt = 207.2 \text{fb}^{-1}$
102	♦ Data
- "	— Total fit
4 10 F	Background
Candidates per 70 fs	
dates	
gng 103	1
102	1
	× 1
10	1
1	<u>'IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</u>
0	5 t [ps]

Source	Uncertainty [fs]
Ξ_c contamination	0.34
Resolution model	0.46
Backgrounds	0.20
Detector alignment	0.46
Momentum scale	0.09
Total	0.77

Measured Lifetime: $203.20 \pm 0.89 \pm 0.77$ ps

Decays of $\Xi_c^{\ 0} \to \Lambda_c^{\ +}\pi^{\ }$ (discovered by Belle, measured by LHCb and by Belle) and $\Xi_c^{\ +} \to \Lambda_c^{\ +}\pi^0$ (theoretically estimated and experimentally limited by looking at the distributions in the data)

Λ_c^+ Lifetime Measurement at Belle II

Experiment	Lifetime (fs)
This measurement	$203.20 \pm 0.89 \pm 0.77$
LHCb (2019)	$203.5 \pm 1.0 \pm 1.3 \pm 1.4$
FOCUS (2002)	$204.6 \pm 3.4 \pm 2.5$
SELEX (2001)	$198.1 \pm 7.0 \pm 5.6$
CLEO (2001)	$179.6 \pm 6.9 \pm 4.4$

- World's best measurements of the Λ_c^+ lifetime
 - Consistent with current world averages
 - Slight tension with CLEO measurement remains
 - Benchmark for future baryon lifetime measurements

Phys. Rev. Lett. 130, 071802 (2023)

Ω_c^+ Lifetime Measurement at Belle II

(3)
$$\Omega_c^0 \to \Omega^- \pi^+$$
(2) $\Omega^- \to \Lambda^0 K^-$

- 207 fb⁻¹ of collision data is used. $\Omega_c^{\ 0} \rightarrow \Omega^- \pi^+$ decay is considered.
- Complex topology of reconstructed decay chain with two secondary vertices.

$${}^{(1)}\Lambda^0 \to p\pi^-$$

- Λ⁰ → pπ are reconstructed using oppositely charged tracks one of which must be a proton.
 Decay vertex of the Λ⁰ must be at least 0.35 cm from IP.
- Λ^0 are combined with \mathbf{K}^* for which $\mathbf{p}_{\mathrm{T}} > 0.15$ GeV/c, forming Ω^* . Ω^* decay vertex lies between Λ^0 and IP and at least 0.5 mm from IP. For Ω^* and Λ^0 , angle between their respective momenta and displacement from IP is less than 90° .

• Ω_c^0 from B are removed by requesting its scaled momentum to be larger than 0.6 GeV/c. Scaled momentum is defined as:

$$p_{\rm cms} / \sqrt{s/4 - m(\Omega^- \pi^+)^2}$$

where p_{ems} is the momentum of the Ω_c^0 , s is the squared center-of-mass energy, and $m(\Omega^-\pi^+)$ is the reconstructed Ω_c^0 mass.

Ω_c^+ Lifetime Measurement at Belle II

Previous measurements: WA89 $55^{+22}_{-25} \times 10^{-15}$ s, 86 events, modes: $\Omega \cdot \pi^+ \pi^- \pi^+$, $\Xi^- \text{K}^- \pi^+ \pi^+ \leftarrow \text{Wrong mass!}$

E687
$$86^{+39}_{-30} \times 10^{-15}$$
s, 25 events, mode: $\Sigma^+ \text{K}^- \text{K}^- \pi^+$

Decay mode not seen by any other experiment!

FOCUS 72 $\pm 16 \times 10^{-15}$ s, 64 events, modes: $\Omega^-\pi^+$, Ξ^- K $^-\pi^+$ π^+

LHCb $268\pm26\times10^{-15}$ s, pK·K· π^* (in semi-leptonic decays) $276.5\pm13.7\times10^{-15}$ s, modes: inclusive pK·K· π^*

For Belle II we knew already that Ω : π +was decay mode with the best statistics and signal:noise ratio.

All cut were defined before looking at any lifetime distribution.

132 candidates with a signal purity 66.5%

Ω_c^+ Lifetime Measurement at Belle II

Prospects for future baryon analysies in Belle II

We can extrapolate from what has been done recently in Belle

- Charmed baryon spectroscopy
- Other baryon spectroscopy (e.g.excited strange baryons)
- Charmed baryon decay modes
- CP Violation in charmed baryons

Resent charmed baryon results Belle

Process	Reference	Physics Covered
$\Omega_c^0 \to \pi^+ [\Omega(2012)^- \to \bar{K}\Xi]$	PRD 104, 052005 (2021)	Evidence: 4.2σ
$\Lambda_c^+ o p\pi^0/p\eta$	PRD 103, 072004 (2021)	SCS decays
$\Lambda_c^+ \to p\omega$	PRD 104, 072008 (2021)	SCS decay, 3pi mode
$\Lambda_c^+ o p \eta'$	JHEP 03, 090 (2022)	SCS decay, 5.4σ
$\Lambda_c^+ o \eta \Lambda \pi^+$	PRD 103, 052005 (2021)	$\Lambda(1670), \Sigma(1385)^{+}$
$\Lambda_c^+ \to \Lambda h^+/\Sigma^0 h^+$	Belle note #625	Direct CPV search, Br, Acp
$\Lambda_c^+ \to \Sigma^+ \pi^0/\Sigma^+ \eta/\Lambda_c^+ \to \Sigma^+ \eta'$	Belle note #626	Br, Acp
$\Lambda_c^+ \to \Sigma^+ \gamma / \Xi_c^0 \to \Xi^0 \gamma$	arXiv: 2206.12517	Weak radiative decays, UL
$\Xi_c^0 \to \Lambda K_S^0 / \Sigma^0 K_S^0 / \Sigma^+ K^-$	PRD 105, L011102 (2022)	Br, CF decays
$\Xi_c^0 o \Xi^- \ell^+ \nu_\ell$	PRL 127, 121803 (2021)	Br, Acp, LFU
$\Xi_c^0 o \Lambda_c^+ \pi^-$	arXiv: 2206.08527	Heavy-flavor-conserving decay
$\Omega_c^0 \to \Omega^- \ell^+ \nu_\ell$	PRD 105, L091101 (2022)	Br, LFU
$\Sigma_c(2455)^+, \Sigma(2520)^+$	PRD 104, 052003 (2021)	mass and widths
$\Sigma_c(2455)^{0,++}\pi^{\pm}$	arXiv: 2206.08822	New excited charmed baryon, 4.2 σ

Ω_c Spectroscopy

Spectroscopy of non-charmed baryons

Many excited singly/doubly/triply strange baryons can be found, particularly in charmed baryons decays

Strong indication that it is an orbital excitation $J^P = (3/2)^r$ state, or a molecular state.

It would be expected to have a $(1/2)^-$ partner; Belle II can look for these and other states.

Other example: Investigation of excited Ξ baryons in Ξ_c decays. Belle II uniquely positioned for this kind of physics.

PRL 121 (2018) 5, 052003 e-Print 2207.03090 Phys. Rev. D 104 (2021), 5, 052005

Measurements of $\Omega_C^0 \to \Omega^- \ell^+ \nu_\ell$ and $\Xi_C^0 \to \Xi^- \ell^+ \nu_\ell$

Semi-leptonic decays of charmed baryons:

- Ideal test of QCD in transition region of (non-)perturbative.
- The cleanest processes among charm decays
- Test lepton flavor universality (LFU).

Experimentally:

- BESIII measured the $\mathcal{B}(\Lambda_c^+ \to \Lambda l^+ \nu)$
- ARGUS and CLEOII measured $\mathcal{B}(\Xi_c \to \Xi l^+ \nu)$
- CLEO measured $\mathcal{B}(\Omega_c^0 \to \Omega^- e^+ \nu)$

 $\mathcal{B}(\Lambda_c^+ \to \Lambda \ e^+ \nu_e) = (3.6 \pm 0.4)\% \text{ PRL } 115,221805(2015)$ ${\cal B}(\Lambda_c^+ o \Lambda \, \mu^+ \nu_e) = (3.5 \pm 0.4)\%$ PLB 767, 42 (2017)

large uncertainty

Measurements of $\Omega_{\it C}^0 o \Omega^- \ell^+ \nu_\ell$ and $\Xi_{\it C}^0 o \Xi^- \ell^+ \nu_\ell$

Data-driven method for bkg

- Mis-selected ℓ⁺
- Wrongly constructed Ξ
- $\Xi_c \to \Xi \pi \ell^+ \nu_\ell$
- $\Xi_c \to \Xi \pi + h$
- B decay

PRL 127, 121803 (2021)

$$\mathcal{B}r(\mathcal{E}_c^0 \to \mathcal{E}^- \, e^+ \nu_e) = (1.31 \pm 0.39)\%$$

$$Br(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu) = (1.27 \pm 0.39)\%$$

Previous: $(2.34 \pm 1.59)\%$

Consistent with LFU

PRD 105, L091101 (2022)

$$\frac{\mathcal{B}(\Omega_c^0 \to \Omega^- e^+ \nu)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = 1.98 \pm 0.15$$

$$\frac{\mathcal{B}(\Omega_c^0 \to \Omega^- \mu^+ \nu)}{\mathcal{B}(\Omega_c^0 \to \Omega^- \pi^+)} = 1.94 \pm 0.21$$

Previous: 2.4 + 1.2

M. (GeV/c²)
Andrzej Bożek @ Probing Baryon Week decays 2023 Warsaw
M. (GeV/c²)
Belle II perspectives for Benneistent with LFU

Measurement of $\Lambda_c^+ \to p\omega$, $\Lambda_c^+ \to p\eta'$

- Searching for new production model is very important to understand the nature of $\Omega(2012)^-$
- A theoretical study of the $\Omega(2012)^-$ in the nonleptonic weak decays of $\Omega_c^0 \to \pi^+(\overline{K}\Xi)^-$ was reported [1]
- We do the search in both $K_S^0\Xi^-$ and $K^-\Xi^0$ final states

PRD 104, 052005 (2021)

$$= \frac{\mathcal{B}(\Omega_c^0 \to \pi^+\Omega(2012)^-) \times \mathcal{B}(\Omega(2012)^- \to (\bar{K}\Xi)^-)}{\mathcal{B}(\Omega_c^0 \to \pi^+\Omega^-)}$$

$$= \frac{N_{\text{sis}}^{\text{obs}} \times \epsilon_{\pi+\Omega^{-}}}{N_{\pi+\Omega^{-}}^{\text{obs}} \times (f_{1} \times \epsilon_{1} \times \mathcal{B}_{1} + f_{2} \times \epsilon_{2} \times \mathcal{B}_{2})}$$
$$= 0.220 \pm 0.059(\text{stat.}) \pm 0.035(\text{syst.}),$$

Andrzej Bożek @ Probing Baryon Week decays 2023 Warsaw

Measurement of $\Lambda_c^+ \to p\omega$, $\Lambda_c^+ \to p\eta'$

- LHCb reported the first observation of a SCS decay $\Lambda_c^+ \to p\omega [\to \mu^+\mu^-]$, ${\rm Br}(\Lambda_c^+ \to p\omega) = (9.4 \pm 3.9) \times 10^{-4}$
- We perform same measurement by reconstructing $\omega \to \pi^+\pi^-\pi^0$ decay

Br(
$$\Lambda_c^+ \to p\omega$$
) = (8.27 ± 0.75 ± 0.62 ± 0.42) × 10⁻⁴

- Most precise measurement
- · Consistent with LCHb result

- First observation of Λ_c^+ in $\Lambda_c^+ \to p\eta'$
- Consistent with the $SU(3)_F$ calculation Belle II perspectives for Baryon Physics

CP violation search using charmed baryons

CP violation in baryons very important to understand (baryon asymmetry in the universe......) CPV in baryons has to be *direct* as there is no mixing between particle and anti-particle

Some clear experimental advantages over searches in B-baryons:

 e^+e^- machines can get good signals for many charmed baryon modes comparatively low multiplicity makes for final states that are easier to analyze

Looking for CPV in charmed baryon decays is a several step process:

- 1. Choose a suitable decay mode and measure the branching fraction (Nothing measurable expected in Cabibbo-favored decays)
- 2. Measure the asymmetry parameter, α

For a decay such as $\Lambda_{\rm c}{}^{+}\!\to\,{\rm BP}\,$ (baryon + pseudoscalar meson), the α parameter is defined to be:

$$\alpha = \frac{2Re(s.p)}{|s|^2 + |p|^2}$$

(where s and p are the parity-violating swave and the parity-conserving p-wave amplitudes in the decay)

3. Measure the difference in the asymmetry parameters for particles/antiparticles (Note that Belle II has excellent hyperon detection efficiency and purity)

CP violation search using charmed baryons

Asymmetry measurement of the (Cabibbo-allowed) decay $\Xi_c^0 \rightarrow \Xi^- \pi^+$

 α Is the slope of the line of dN/dcos(θ)

$$A_{CP}^{\alpha} = \frac{\alpha(\Lambda_c^+) + \alpha(\Lambda_c^-)}{\alpha(\Lambda_c^+) - \alpha(\Lambda_c^-)}$$

For
$$\Xi_c^0$$
 $\alpha^+ = -0.64 \pm 0.05$ $\alpha^- = 0.61 \pm 0.05$
$$A_{GP} = 0.024 \pm 0.052 \pm 0.014$$

No Evidence of CP Violation

Y.B. Li et al, PRL 127, 121803 (2021)

For each 1 ab 1 data expected A_{CP}^{Ω} precision for the Cabibbo-suppressed modes $\Lambda_c{}^+ \to \Lambda$ K $^+$ and Σ^0 K $^+$ are \sim 0.1 and \sim 0.3

Not very precise, but who knows?

CP violation search using charmed baryons

Averaged decay asymmetry parameters:

- First measurements of K⁺ modes
- Improved precision of π^+ modes

α -induced CP asymmetry:

• First measurements of A_{CP}^{α} for SCS decays of charmed baryons

Λ -hyperon CP violation:

 First measurement of hyperon CPV searches in CF charm decays.

$$\begin{split} &\alpha_{\rm avg}(\Lambda_c^+ \to \Lambda K^+) \ = \ -0.585 \pm 0.049 \pm 0.018 \,, \\ &\alpha_{\rm avg}(\Lambda_c^+ \to \Lambda \pi^+) \ = \ -0.755 \pm 0.005 \pm 0.003 \,, \\ &\alpha_{\rm avg}(\Lambda_c^+ \to \Sigma^0 K^+) \ = \ -0.55 \ \pm 0.18 \ \pm 0.09 \,, \\ &\alpha_{\rm avg}(\Lambda_c^+ \to \Sigma^0 \pi^+) \ = \ -0.463 \pm 0.016 \pm 0.008 \,, \end{split}$$

Channel	A_{CP}^{α}
$\Lambda_c^+ \rightarrow \Lambda K^+$	$-0.023 \pm 0.086 \pm 0.071$
$\Lambda_c^+ \rightarrow \Lambda \pi^+$	$+0.020 \pm 0.007 \pm 0.013$
$\Lambda_c^+ \rightarrow \Sigma^0 K^+$	$+0.08 \pm 0.35 \pm 0.14$
$\Lambda_c^+ \to \Sigma^0 \pi^+$	$-0.023 \pm 0.034 \pm 0.030$

$$A_{CP}^{\alpha} = +0.013 \pm 0.007 \pm 0.011$$

No evidence of baryon CPV is found

Conclusions

Two Belle II results on charmed baryon lifetime

$$\Lambda_{\rm c}^+$$
 203.20 \pm 0.89 \pm 0.77 fs (world's most precise measurement) $\Omega_{\rm c}^0$ 243 \pm 48 \pm 11 fs (consistent with LHCb measurement)

- Rich recent research results from Belle
 - 1. Charmed Baryon Spectroscopy (particularly involving γ decays)
 - Strange Baryon Spectroscopy (particularly using hyperons in charmed baryon decays)
 - 3. Charmed Baryon Decay Modes
 - 4. CP Violation searches
- Belle II is the working experiment, it is well calibrated and understood and now all we need is the luminosity. We can do it and much more.

Backup

Measurement of $\Lambda_c^+ o p \pi^0/p \eta$

A method of branching ratio with respect to Cabibbo-Favored decay $\Lambda_c^+ o pK^-\pi^+$ (reference mode) is applied

PRD 103, 052005 (2021)

to measure the branching fractions of signal decay.

$$\frac{B(Signal)}{B(CF)} = \frac{N^{obs}(Signal)}{\epsilon^{MC}(Signal)} \times \frac{\epsilon^{MC}(CF)}{N^{obs}(CF)}$$

 $\Lambda_c^+ o p K^- \pi^+$ efficiency estimation: Dalitz method.

Fit to $M(pK^-\pi^+)$ from data using double Gaussian + second-order polynomial

$$\varepsilon = \sum s_i / \sum_j (s_j / \varepsilon_j) = (14.06 \pm 0.01)\%.$$

Y_{ield}:
$$1476200 \pm 1560$$

 $\chi^2/ndf = 1.06$