Nonleptonic decays of heavy baryons

- the perspective of theory -

Stefan Groote

Institute of Physics, University of Tartu, Estonia

March 6th, 2023

A short history Experimental status

Nonleptonic decays of hyperons

1966: F. Hussain and P. Rotelli

Semi-phenomenological analysis of nonleptonic hyperon decays Il Nuovo Cimento A **44** (1966) 1047–1054

1972: J.G. Körner and T. Gudehus

Nonleptonic hyperon decays in a current–current quark model Il Nuovo Cimento **11A** (1972) 597–617

A short history Experimental status

Nonleptonic decays of charmed baryons

1979: J.G. Körner, G. Kramer, J. Willrodt

Exploratory quark model calculation of two-body and quasi-two-body non-leptonic charm baryon decays Z. Phys. C **2** (1979) 117

1992: J.G. Körner and M. Krämer

Updated and improved quark model analysis of two-body Cabibbo favoured non-leptonic decays of charmed baryons Z. Phys. C **55** (1992) 659

A (1) > (1) = (1)

A short history Experimental status

A review of 196 nonleptonic baryonic decays

Eur. Phys. J. C (2022) 82:297 https://doi.org/10.1140/epjc/s10052-022-10224-0

Review

THE EUROPEAN PHYSICAL JOURNAL C

(日)

Topological tensor invariants and the current algebra approach: analysis of 196 nonleptonic two-body decays of single and double charm barvons – a review

Stefan Groote^{1,a}, Jürgen G. Körner²

¹ Füüsika Instituut, Tartu Ülikool, W. Ostwaldi 1, 50411 Tartu, Estonia
² PRISMA Cluster of Excellence, Institut für Physik, Johannes-Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany

Received: 29 December 2021 / Accepted: 7 March 2022 © The Author(s) 2022

The research presented in this paper was begun while JGK was visiting the Quaid-y-Azam University in Islamabad in 2006. His thanks go to Jamil Aslam, Alimjian Kadeer and the late Faheem Hussain[†] for their participation in the early stages of this work. ... The almost finished manuscript was finalized by SG in thankful remembrance of his deceased collaborator and friend JGK.

Introduction

- A short history
- Experimental status

2 Outline of our method

- Topological invariants
- Tables of topological tensor invariants
- Current algebra description

3 Conclusions and outlook

- Conclusions
- Outlook

BESIII collaboration at the Beijing e^+e^- collider BEPCII

- 2015: detection of Λ⁺_c pair production opened new era BESIII Collaboration, Phys. Rev. Lett. **116** (2016) 052001
- asymmetry parameters for Λ⁺_c → pK⁰_S, Λ⁰π⁺, Σ⁺π⁰, Σ⁰π⁺ BESIII Collaboration, Phys. Rev. D **100** (2019) 072004
- measurement of the SCS processes $\Lambda_c^+ \rightarrow p\eta, p\pi^0$ BESIII Collaboration, Phys. Rev. D **95** (2017) 111102
- identification of Λ⁺_c → nK⁰_sπ⁺ raised hope to measure also decays with neutrons BESIII Collaboration, Phys. Rev. Lett. **118** (2017) 112001
- upgrade of BEPCII: Λ⁺_c production rate by factor 16 BESIII Collaboration, Chin. Phys. C 44 (2020) 040001
- energy increase up to 4.9 GeV: Σ_c pairs
- energy increase up to 4.95 ${\rm GeV}\colon\, \Xi_c^+$ and Ξ_c^0 pairs

・ 同 ト ・ ヨ ト ・ ヨ ト …

Belle Collaboration, LHCb Collaboration

- tagging techniques allow for absolute branching ratios Belle Collaboration, Phys. Rev. Lett. **113** (2014) 042002
- measurements of absolute branching ratios of \(\exists _c^0, \exists _c^+\) Belle Collaboration, Phys. Rev. Lett. **122** (2019) 082001
 Belle Collaboration, Phys. Rev. D **100** (2019) 031101
- confirmation of $\Lambda_c^+ \rightarrow p\eta, p\pi^0$ Belle Collaboration, Phys. Rev. D **103** (2021) 072004
- possibility to measure DCS decay $\Xi_c^+ \to p\phi$ LHCb Collaboration, JHEP **1904** (2019) 084
- charm conserving SCS decay Ξ⁰_c → Λ⁺_cπ⁻ LHCb Collaboration, Phys. Rev. D **102** (2020) 071101
- double charmed baryon two-body decay $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$ LHCb Collaboration, Phys. Rev. Lett. **121** (2018) 162002

・ 同 ト ・ ヨ ト ・ ヨ ト

Topological invariants Tables of topological tensor invariants Current algebra description

Contributing diagrams

current \times current quark model

Description of nonleptonic two-body decays by five generic quark diagrams. To compare with: decay $\Sigma^{*+} \rightarrow \Lambda^0 + \pi^+$ with SU(3) coupling $B_{10} \rightarrow B_8 + M_8$ described by invariants

$$\tilde{l}_1 = B^{a[bc]} B_{a[bc']} M_c^{c'}, \quad \tilde{l}_2 = B^{a[bc]} B_{b[c'a]} M_c^{c'}$$

Image: A marked and A mar A marked and A

Topological invariants Tables of topological tensor invariants Current algebra description

Effective weak current–current Hamiltonian

• $\Delta C = 1$ Cabibbo favoured (CF) decays

$$\mathcal{H}_{\mathrm{eff}} = \frac{G_F}{2\sqrt{2}} V_{cs} V_{ud}^* (c_+ \mathcal{O}_+ + c_- \mathcal{O}_-) + H.c.$$

$$\mathcal{O}_{\pm}=(ar{s}c)(ar{u}d)\pm(ar{u}c)(ar{s}d),~(ar{q}_1q_2)\equivar{q}_1\gamma^\mu(1-\gamma_5)q_2$$

• $\Delta C = 1$ singly Cabibbo suppressed (SCS) decays

$$\begin{aligned} \mathcal{H}_{\rm eff}(a) &= \frac{G_F}{2\sqrt{2}} V_{cs} V_{us}^* (c_+ \mathcal{O}_+(a) + c_- \mathcal{O}_-(a)) + H.c. \\ \mathcal{H}_{\rm eff}(b) &= \frac{G_F}{2\sqrt{2}} V_{cd} V_{ud}^* (c_+ \mathcal{O}_+(b) + c_- \mathcal{O}_-(b)) + H.c. \end{aligned}$$

 $\mathcal{O}_{\pm}(a)=(ar{s}c)(ar{u}s)\pm(ar{u}c)(ar{s}s),\ \mathcal{O}_{\pm}(b)=(ar{d}c)(ar{u}d)\pm(ar{u}c)(ar{d}d)$

Topological invariants Tables of topological tensor invariants Current algebra description

Effective weak current-current Hamiltonian (cont.)

• $\Delta C = 1$ doubly Cabibbo suppressed (DCS) decays

$$\mathcal{H}_{\mathrm{eff}}(c) \;=\; rac{{\mathcal{G}_F}}{{2\sqrt 2 }} V_{cd}^{*} V_{us}^{*}(c_+ \mathcal{O}_+(c) + c_- \mathcal{O}_-(c)) + H.c.$$

$$\mathcal{O}_{\pm}(c)=(ar{d}c)(ar{u}s)\pm(ar{u}c)(ar{d}s)$$

• $\Delta C = 0$ singly Cabibbo suppressed (SCS) decays

$$\begin{aligned} \mathcal{H}_{\rm eff}(a') &= \frac{G_F}{2\sqrt{2}} V_{us} V_{ud}^* (c_+ \mathcal{O}_+(a') + c_- \mathcal{O}_-(a')) + H.c. \\ \mathcal{H}_{\rm eff}(b') &= \frac{G_F}{2\sqrt{2}} V_{cd} V_{cs}^* (c_+ \mathcal{O}_+(b') + c_- \mathcal{O}_-(b')) + H.c. \end{aligned}$$

 $\mathcal{O}_{\pm}(a')=(ar{u}s)(ar{d}u)\pm(ar{d}s)(ar{u}u),\ \mathcal{O}_{\pm}(b')=(ar{d}c)(ar{c}s)\pm(ar{c}c)(ar{d}s)$

Körner–Pati–Woo (KPW) theorem

- Because of unitarity, with Wolfenstein parametrisation one has $V_{cs}V_{us}^* = -V_{cd}V_{ud}^* + O(\lambda^4)$ and $V_{cd}V_{cs}^* = -V_{us}V_{ud}^* + O(\lambda^4)$ \Rightarrow SCS = SCSa - SCSb
- diagrams la and lb factorisable, remaining (IIa, IIb, III) nonfactorisable *W*-exchange diagrams
- W-exchange contributions are related to the operator
 \$\mathcal{O}_{-} = (\bar{q}_1 q_2)(\bar{q}_3 q_4) (\bar{q}_3 q_2)(\bar{q}_1 q_4)\$ only (KPW theorem)
 J. G. K\vec{o}rner, Nucl. Phys. B **25** (1971) 282–290
 J. C. Pati and C. H. Woo, Phys. Rev. D **3** (1971) 2920
- ground state transitions $1/2^+ \rightarrow 1/2^+ + 0^-(1^-)$ in $\mathcal{H}_{eff}(\mathcal{O}_-)$ induced by antisymmetric flavour-changing tensor $\mathcal{H}_{[q_1q_3]}^{[q_2q_4]}$
- diagrams Ia, Ib \rightarrow (I_1^-, I_2^-) , diagram IIa \rightarrow (I_3, I_4) , diagram IIb \rightarrow (\hat{I}_3, \hat{I}_4) , diagram III \rightarrow I_5 .

(口) (同) (回) (回) (

Topological invariants Tables of topological tensor invariants Current algebra description

Seven topological tensor invariants

$$\begin{split} I_{1}^{-}(\ell,\ell') &= B_{\ell}^{a[bc]}B_{a[bc']}^{\ell'}M_{d'}^{d}H_{[cd]}^{[c'd']} \\ I_{2}^{-}(\ell,\ell') &= B_{\ell}^{a[bc]}B_{b[c'a]}^{\ell'}M_{d'}^{d}H_{[cd]}^{[c'd']} \\ I_{3}(\ell,\ell') &= B_{\ell}^{a[bc]}B_{a[b'c']}^{\ell'}M_{c}^{d}H_{[db]}^{[c'b']} \\ I_{4}(\ell,\ell') &= B_{\ell}^{b[ca]}B_{a[b'c']}^{\ell'}M_{c}^{d}H_{[db]}^{[c'b']} \\ \hat{I}_{3}(\ell,\ell') &= B_{\ell}^{a[bc]}B_{a[b'c']}^{\ell'}M_{d'}^{d}H_{[cb]}^{[db']} \\ \hat{I}_{4}(\ell,\ell') &= B_{\ell}^{a[bc]}B_{b'[c'a]}^{\ell'}M_{d'}^{c'}H_{[cb]}^{[db']} \\ I_{5}(\ell,\ell') &= B_{\ell}^{a[bc]}B_{a'[b'c']}^{\ell'}M_{c}^{c'}H_{[ab]}^{[a'b']} \end{split}$$

for baryonic transition $\ell' \to \ell$

- u, d, s, c = 1, 2, 3, 4
- summation over quark labels
- Jacobi identity used: $B^{\ell}_{a[bc]} + B^{\ell}_{b[ca]} + B^{\ell}_{c[ab]} = 0$
- rearrangement of indices
- $I'_{5}(\ell, \ell') = B^{a[bc]}_{\ell} B^{\ell'}_{b'[c'a']} M^{c'}_{c} H^{[a'b']}_{[ab]}$ equal to $I_{5}(\ell, \ell')$

• tadpole-type $B_{\ell}^{a[bc]}B_{a[bc]}^{\ell'}M_{d'}^{d}H_{[cd]}^{[cd']}$ vanishes for $\Delta C = 1$

< D > < A > < B > < B >

Topological invariants Tables of topological tensor invariants Current algebra description

Ground state charmed baryon states $J^P = 1/2^+$

Notation	content	SU(3)	(<i>I</i> , <i>I</i> ₃)	S	С	Mass [MeV]
Λ_c^+	c[ud]	3	(0,0)	0	1	2286.46 ± 0.14
Ξ_c^+	c[su]	3	(1/2, 1/2)	-1	1	2467.95 ± 0.19
Ξ_c^0	c[sd]	3	(1/2, -1/2)	-1	1	2470.99 ± 0.40
Σ_{c}^{++}	сии	6	(1, 1)	0	1	2453.97 ± 0.14
Σ_c^+	c{ud}	6	(1, 0)	0	1	2452.9 ± 0.4
Σ_c^0	cdd	6	(1, -1)	0	1	2453.75 ± 0.14
$\Xi_c^{\prime+}$	c{su}	6	(1/2, 1/2)	-1	1	2578.4 ± 0.5
$\Xi_c^{\prime 0}$	c{sd}	6	(1/2, -1/2)	-1	1	2579.2 ± 0.5
Ω_c^0	CSS	6	(0,0)	-2	1	2695.2 ± 1.7
Ξ_{cc}^{++}	сси	3	(1/2, 1/2)	0	2	3621.2 ± 0.7
Ξ_{cc}^+	ccd	3	(1/2, -1/2)	0	2	3621
Ω_{cc}^+	CCS	3	(0,0)	-1	2	3710

Stefan Groote Nonleptonic decays of heavy baryons

イロッ 人間 マイヨッ イヨッ

Topological invariants Tables of topological tensor invariants Current algebra description

SU(4) representations

- not concerned with the 20 $J^P = 3/2^+$ (C = 0, 1, 2, 3) ground state baryons belonging to the **20** representation of SU(4), as these are prevented from contributing as intermediate states by the KPW theorem.
- Together with light baryons p, n, Λ^0 , Σ^+ , Σ^0 , Σ^- , Ξ^+ , Ξ^0 the $8 + 12 = 20 J^P = 1/2^+$ ground state baryons belong to the **20'** representation of SU(4)

Topological invariants Tables of topological tensor invariants Current algebra description

HQET decays

 nine antitriplet and sextet single charmed baryons in 21 representation of spin–flavour SU(6) ⊃ SU(2) × SU(3),

$$\mathbf{21} \subset \mathbf{1} \otimes \mathbf{\overline{3}} \oplus \mathbf{3} \otimes \mathbf{6}$$

- Σ_c^{++} , Σ_c^+ , Σ_c^0 decay dominantly via one-pion emission
- $\Xi_c^{\prime+}$, $\Xi_c^{\prime 0}$ decay dominantly via one-photon emission
- remaining Λ_c^+ , Ξ_c^+ , Ξ_c^0 , Ω_c^0 , Ξ_{cc}^{++} , Ξ_{cc}^+ , Ω_{cc}^+ decay via weak interactions, mostly to $J^P = 1/2^+$ baryons and $J^P = 0^-$ mesons.

This is the main concern of this talk.

$$\mathcal{M}(B_i \xrightarrow{H} B_f M_k) = \mathcal{M}_{fki} = \sum_j I_{fki}^j \mathcal{T}_j \qquad j = 1^-, 2^-, 3, 4, \hat{3}, \hat{4}, 5$$

< ロ > < 同 > < 三 > < 三 >

Topological invariants Tables of topological tensor invariants Current algebra description

${\sf SU}(3)$ properties of ${\cal H}_{ m eff}({\cal O}_-)$

		Y	<i>I</i> 3	<i>SU</i> (3)	ΔI	ΔU	ΔU_3	ΔV
CF	$H^{[su]}_{[cd]}$	2/3	-1	6	1	1	1	0
SCS	$H_{[cs]}^{[su]}$	-1/3	-1/2	${\bf 6}\oplus \overline{\bf 3}$	1/2	1, 0	0, 0	1/2
	$H_{[cd]}^{[du]}$	-1/3	-1/2	${\bf 6} \oplus {\bf \overline{3}}$	1/2	1,0	0,0	1/2
	$H_{[cs]}^{[su]} - H_{[cd]}^{[du]}$	-1/3	-1/2	6	1/2	1	0	1/2
DCS	$H^{[du]}_{[cs]}$	-4/3	0	6	0	1	-1	1
$\Delta C = 0$	$H_{[su]}^{[ud]}$	-1	1/2	8	1/2	1	-1	1/2
	$H_{[cs]}^{[dc]}$	-1	1/2	8	1/2	1	-1	1/2

T. A. Kaeding, "Tables of SU(3) isoscalar factors," Atom. Data Nucl. Data Tabl. **61** (1995) 233

• □ ▶ • □ ▶ • □ ▶

Introduction Topological invariants Outline of our method Tables of topological tensor invariants Conclusions and outlook Current algebra description

Weight diagrams

Figure: Weight diagrams of the sextet (left) and antitriplet (right) representation of the effective weak Hamiltonian. The locations of the CF, SCS and DCS transitions are marked by a circle dot symbol \odot .

Introduction Topological invariants Outline of our method Tables of topological tensor invariants Conclusions and outlook Current algebra description

An example

Charmed baryon decays $B_c(\overline{\mathbf{3}}) \stackrel{H(\mathbf{6})}{\longrightarrow} B(\mathbf{8}) + M(\mathbf{8},\mathbf{1})$

SU(3) decomposition of the transitions

 $\overline{\mathbf{3}} \to \mathbf{6} \otimes \mathbf{8} \otimes \mathbf{8} = \mathbf{3} \cdot \overline{\mathbf{3}} \oplus \mathbf{4} \cdot \mathbf{6} \oplus \mathbf{5} \cdot \overline{\mathbf{15}} \oplus \overline{\mathbf{15}} \, ' \oplus \overline{\mathbf{21}} \oplus \overline{\mathbf{24}} \oplus \mathbf{2} \cdot \overline{\mathbf{42}} \oplus \overline{\mathbf{60}}$

represents decays of antitriplet charmed baryons Λ_c^+ , Ξ_c^+ and Ξ_c^0

- SCS: cancellation of $\mathcal{H}_{\rm eff}(c \to s; s \to u)$ and $\mathcal{H}_{\rm eff}(c \to d; d \to u)$ leads to sextet **6**
- $\overline{\mathbf{3}}$ appears three times (Kaeding notation) \Rightarrow
- three SU(3) invariant amplitudes, 7 3 = 4 linear relations

$$I_1^- = I_2^ 2\hat{I}_3 + \hat{I}_4 = 0$$
 $I_3 + I_4 = 2I_5$ $2I_1^- = I_3 + \hat{I}_3$

イロト イポト イヨト イヨト

Topological invariants Tables of topological tensor invariants Current algebra description

An example (cont.)

				I_1^-	I_2^-	<i>I</i> ₃	<i>I</i> 4	Î3	Î4	<i>I</i> ₅
CF	$12 \Lambda_c^+$	\rightarrow	$\Lambda^0\pi^+$	-2	-2	-2	+4	-2	+4	+1
	$4\sqrt{3}\Lambda_c^+$	\rightarrow	$\Sigma^0 \pi^+$	0	0	+2	0	-2	+4	+1
	$4\sqrt{3}\Lambda_c^+$	\rightarrow	$\Sigma^+\pi^0$	0	0	-2	0	+2	-4	-1
	$4\sqrt{3}\Lambda_c^+$	\rightarrow	$\Sigma^+ \eta_\omega$	0	0	-2	0	-2	+4	-1
	$2\sqrt{6}\Lambda_c^+$	\rightarrow	$\Sigma^+ \eta_\phi$	0	0	-2	+2	0	0	0
	$12\Lambda_c^+$	\rightarrow	$\Sigma^+\eta_8$	0	0	+2	-4	-2	+4	-1
	$6\sqrt{2}\Lambda_c^+$	\rightarrow	$\Sigma^+\eta_1$	0	0	-4	+2	-2	+4	-1
	$2\sqrt{6}\Lambda_c^+$	\rightarrow	$par{K}^0$	+1	+1	+2	-2	0	0	0
	$2\sqrt{6}\Lambda_c^+$	\rightarrow	$\Xi^0 K^+$	0	0	0	-2	0	0	-1

... and a lot more decays (in total: 196)

< D > < A > < B > < B >

Topological invariants Tables of topological tensor invariants Current algebra description

S- and P-wave amplitudes

Current algebra approach

$$\langle B_f M_k | \mathcal{H}_{\text{eff}} | B_i \rangle = \bar{\psi}_f (\mathcal{A}_{fki} - \mathcal{B}_{fki} \gamma_5) \psi_i$$

parity violating S-wave amplitude

$$\mathcal{A}_{fki} = \mathcal{A}_{fki}^{\mathrm{fac}} + \mathcal{A}_{fki}^{\mathrm{pole}} + \mathcal{A}_{fki}^{\mathrm{com}}$$

parity conserving P-wave amplitude

$$\mathcal{B}_{fki} = \mathcal{B}_{fki}^{\text{fac}} + \mathcal{B}_{fki}^{\text{pole}} + \mathcal{B}_{fki}^{\text{com}}$$

- factorising contributions related to invariants I_1^- and I_2^-
- nonfactorising pole and commutator contributions related to the remaining invariants I_3 , I_4 , \hat{I}_3 , \hat{I}_4 and I_5

Introduction Topological invariants
Outline of our method
onclusions and outlook
Current algebra description

Parity violating S-wave amplitude \mathcal{A}_{fki}^{com}

p1

$$\mathcal{A}_{fki}^{\text{com}} = \frac{\sqrt{2}}{f_k} \langle B_f | [M_k, \mathcal{H}_{\text{eff}}^{\text{pc}}] | B_i \rangle$$

$$= \frac{\sqrt{2}}{f_k} \Big(\sum_{\ell} \langle B_f | M_k | B_\ell \rangle \langle B_\ell | \mathcal{H}_{\text{eff}}^{\text{pc}} | B_i \rangle$$

$$- \sum_{\ell'} \langle B_f | \mathcal{H}_{\text{eff}}^{\text{pc}} | B_{\ell'} \rangle \langle B_{\ell'} | M_k | B_i \rangle \Big)$$

$$= \mathcal{A}_{fki}^{\text{com}}(s) - \mathcal{A}_{fki}^{\text{com}}(u)$$

$$\sim \sum_{\ell'} l_{fk\ell}^f l_{\ell_\ell}^{\text{pc}} - \sum_{\ell'} l_{f\ell'}^{\text{pc}} l_{\ell'k_i}^f$$

$$(f_k \text{ pseudoscalar coupling})$$

$$(f_k \text{ pseudoscalar coupling})$$

$$B_l \xrightarrow{B_l} \xrightarrow{B_l} \xrightarrow{B_l} \xrightarrow{M}$$

$$B_l \xrightarrow{B_l} \xrightarrow{B_l} \xrightarrow{B_l} \xrightarrow{M}$$

$$B_l \xrightarrow{B_l} \xrightarrow{B_l} \xrightarrow{B_l} \xrightarrow{B_l} \xrightarrow{M}$$

f-type matrix element $I_{\ell'k\ell}^f = \langle B_{\ell'}|M_k|B_\ell \rangle = 4(\tilde{l}_1)_{\ell'k\ell} + 2(\tilde{l}_2)_{\ell'k\ell}$ composed of strong tensor invariants \tilde{l}_1 and \tilde{l}_2 (cf. before)

Topological invariants Tables of topological tensor invariants Current algebra description

Orthonormality and completeness

Orthonormality relation

$$\sum_{k,m,n} B_{\ell}^{k[mn]} B_{k[mn]}^{\ell'} = \delta_{\ell}^{\ell'}$$

Completeness relation

$$\sum_{\ell} B^{\ell}_{k[mn]} B^{b[cd]}_{\ell} = \frac{2}{6} (\delta^{b}_{k} \delta^{c}_{m} \delta^{d}_{n} - \delta^{b}_{k} \delta^{d}_{m} \delta^{c}_{n}) - \frac{1}{6} (\delta^{b}_{m} \delta^{c}_{n} \delta^{d}_{k} - \delta^{b}_{m} \delta^{d}_{n} \delta^{c}_{k}) - \frac{1}{6} (\delta^{b}_{n} \delta^{c}_{k} \delta^{d}_{m} - \delta^{b}_{n} \delta^{d}_{k} \delta^{c}_{m})$$

used in order to expand *s*- and *u*-channel into tensor invariants, e.g. $(\tilde{l}_1)_{fk\ell} l_{\ell i}^{pc} = B_f^{a[bc]}(M_k)_c^{c'} B_{a[bc']}^{\ell} B_{\ell}^{r[st]} B_{l}^{i}_{[a'b']} H_{[st]}^{[a'b']} = \frac{2}{3} l_3 - \frac{1}{3} l_4 + \frac{2}{3} l_5$ Introduction Topological invariants
Outline of our method Tables of topological tensor invariants
Conclusions and outlook Current algebra description

Parity conserving *P*-wave amplitude $\mathcal{B}_{fki}^{\text{pole}}$

• Parity violating pole contribution neglected,

$$\mathcal{A}_{fki}^{\text{pole}} = -\sum_{\ell} \frac{g_{fk\ell} b_{\ell i}}{m_i - m_\ell} - \sum_{\ell'} \frac{b_{f\ell'} g_{\ell'ki}}{m_f - m_{\ell'}} = \mathcal{A}_{fki}^{\text{pole}}(s) + \mathcal{A}_{fki}^{\text{pole}}(u)$$

as $b_{\ell\ell'} = \langle B_\ell | \mathcal{H}_{\mathrm{eff}}^{\mathrm{pv}} | B_{\ell'} \rangle \ll \langle B_\ell | \mathcal{H}_{\mathrm{eff}}^{\mathrm{pc}} | B_{\ell'} \rangle = \mathsf{a}_{\ell\ell'}$

• For the same reason, partity conserving commutator skipped,

$$\mathcal{B}_{fki}^{\text{com}} \sim \Big(\sum_{\ell} I_{fk\ell}^{f} I_{\ell i}^{\text{pv}} - \sum_{\ell'} I_{f\ell'}^{\text{pv}} I_{\ell'ki}^{f} \Big)$$

• Remaining is parity conserving P-wave amplitude

$$\mathcal{B}_{fki}^{\text{pole}} = \sum_{\ell} \frac{g_{fk\ell} a_{\ell i}}{m_i - m_{\ell}} + \sum_{\ell'} \frac{a_{f\ell'} g_{\ell'ki}}{m_f - m_{\ell'}} = \mathcal{B}_{fki}^{\text{pole}}(s) + \mathcal{B}_{fki}^{\text{pole}}(u)$$
(Goldberger-Treiman relation $g_{fk\ell} = \sqrt{2}(m_f + m_\ell)g_{fk\ell}^A/f_k$)
$$= \frac{\sqrt{2}}{f_k} \left(\sum_{\ell} g_{fk\ell}^A \frac{m_f + m_\ell}{m_i - m_\ell} a_{\ell i} + \sum_{\ell'} a_{f\ell'} \frac{m_i + m_{\ell'}}{m_f - m_{\ell'}} g_{\ell'ki}^A \right)$$

Stefan Groote Nonleptonic decays of heavy baryons

Conclusions Outlook

Conclusions

- Further calculations done with quark models
- Calculation of branching ratios feasible from algebra
- Statments about forbidden decays (within the model)
- Development of sum rules

Problem

 $\Xi_c^+ \to \Xi'^0(1530)\pi^+$ forbidden by KPW theorem if Ξ_c^+ belongs strictly to the antitriplet $\overline{\mathbf{3}}$ but measured by Belle with clear signal M. Sumihama *et al.* [Belle Coll.], Phys. Rev. Lett. **122** (2019) 072501 C.-Q. Geng, C.-W. Liu, T.-H. Tsai, Phys. Rev. D **99** (2019) 114022

Solution

Substancial portion of Ξ_c^+ made of the sextet **6** C.-Q. Geng, X.-N. Jin, C.-W. Liu, Phys. Lett. B **838** (2023) 137736

(correspondence with Chia-Wei Liu, Nov. 2022)

Conclusions Outlook

• Refine the covariantized constituent quark model and extend it to include also SCS and DCS decays of single charmed baryons

J. G. Körner and M. Krämer, Z. Phys. C 55 (1992) 659

- Work on charmed baryon pair production in e^+e^- collisions
- Charmed baryon production via Intrinsic Charm (IC) mechanism
 S. J. Brodsky, S. Groote, S. Koshkarev, Eur. Phys. J. C 78 (2018) 483
- Low energy interactions and baryonic states calculated with the non-local Nambu–Jona-Lasinio model derived from QCD
 - M. Frasca, A. Ghoshal, S. Groote, Phys. Rev. D $\boldsymbol{104}$ (2021) 114036
 - " , Nucl. Part. Phys. Proc. **318-323** (2022) 138-141
 - " , Nucl. Part. Phys. Proc. 324-329 (2023) 85-89
 - " , 2202.14023 [hep-ph]
 - A. Chatterjee, " , 2302.10944 [hep-ph]

Thank you for your interest!

- 4 同 6 4 日 6 4 日 6