Semileptonic form factors: Lattice perspectives for charmed baryons

Gunnar Bali Universität Regensburg

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 813942.

Probing baryon weak decays – from experiment to lattice QCD, Warszawa March 7, 2023

- Is theory under control? Consistency with meson decays?
- $\bullet~$ More channels $\rightarrow~$ precision increases.
- Mesons: except for B_c → J/ψ, only pseudoscalar final states are stable against strong decay. Decays like D → K^{*} → Kπ, B → D^{*} → Dπ are a challenge for theory.
- All positive parity spin 1/2 light baryons as well as the Ω do not undergo strong decay. Ξ^* is quite narrow. Also spin 3/2 initial states are possible.
- Currents that do not exist at tree-level in the SM can in principle be probed with "stable" initial and final hadronic states, e.g., $\Omega_c^* \to \Omega$ or $\Xi (J = 3/2 \to 3/2 \text{ or } 1/2)$, $\Omega_c \to \Omega$ or $\Xi_c \to \Xi^* (1/2 \to 3/2)$.
- Experimental challenge: polarization.

Problem with baryons: noise/signal (c.f. talk by J Bijnens)

HW Hamber, E Marinari, G Parisi, C Rebbi, NPB225 (83) 475 (Appendix B) GP Lepage, http://inspirehep.net/record/287173

Noise is less of a problem for charmed baryons

- $m_N \frac{3}{2}M_\pi \approx 740$ MeV.
- $m_{\Lambda_c} M_D \frac{1}{2}M_{\pi} \approx 350 \text{ MeV}, \ m_{\Lambda_c} \frac{1}{2}M_{\eta_c} M_{\pi} \approx 660 \text{ MeV}.$
- $m_N 3m_\ell \approx m_N$, $m_{\Lambda_c} 2m_\ell m_c < m_N$: a smaller fraction of the mass is "dynamical". Most is due to the heavy spectator quark and does not contribute to the "noise".
- $q^2 < q_{\max}^2 = (m_i m_f)^2$ where q^2 near q_{\max}^2 is easiest to achieve. $m_{\Lambda_c} - m_{\Lambda} \approx 1170 \text{ MeV} < M_D - M_{\pi} \approx 1730 \text{ MeV}$ "easier" (although there is no problem with D decay either).
- Spectrum of excitations of the initial state is very similar as for heavy-light mesons. However, $(E_n - m)/m$ is smaller for final state baryons than for mesons and, unlike in the pseudoscalar meson case, t cannot be made very large.
- Note that $m_c \ll 1/a$ at present-day lattice spacings. For m_b HQET is needed.

Effective masses

CLS ensembles: M_{π} vs a^2

 $N_f = 2 + 1$ flavours of non-perturbatively $\mathcal{O}(a)$ improved Wilson fermions on tree level Symanzik improved glue. **High statistics**: mostly > 6000 MDUs. Always open-boundary conditions in time for a < 0.06 fm. Aim to control all main sources of systematics $(a, m_a \text{ and } V)$.

Six lattice spacings: $a = (0.1 \searrow 0.039)$ fm, $LM_{\pi} \gtrsim 4 +$ smaller volumes, $M_{\pi} = (420 \searrow 130)$ MeV.

CLS ensembles: m_{ℓ} - m_s plane

Three trajectories: can correct for mis-tuning. Good control over the quark mass dependence. $2m_{\ell} + m_s = \text{const.}$: investigate SU(3) flavour breaking (flavour averaged quantities roughly constant). Approach to the physical point involves $M_K \uparrow$ as $M_{\pi} \downarrow$.

The light octet baryon spectrum

Above is a fit to NNLO EOMS BChPT, with the cuts $\overline{M}^2 < (440 \text{ MeV})^2$ and $LM_{\pi} > 4$ on the average meson mass and lattice size.

Varying data cuts and fit ansatz, we obtain the lattice scale t_0 from m_{\pm} . [RQCD, 2211.03744]

Progress since 2008

Comparison with [BMW, S. Dürr et al, 0906.3599] and the precision achieved.

• SU(4) representations (\rightarrow more detail in S Grote's talk)

- Flavour symmetry is not respected but
- simplest way to see which baryons should exist.
- SU(4): $4 \otimes 4 \otimes 4 = 20 \oplus 20 \oplus \overline{4}$

Gell-Mann Okubo mass formulae for charmed baryons

Sextet

$$m_{\Sigma_c^{(*)}} = m_6^{(*)} - \frac{2}{3}A^{(*)}\delta m + O(\delta m^2)$$

$$m_{\Xi_c^{'|*}} = m_6^{(*)} + \frac{1}{3}A^{(*)}\delta m + O(\delta m^2)$$

$$m_{\Omega_c^{(*)}} = m_6^{(*)} + \frac{4}{3}A^{(*)}\delta m + O(\delta m^2)$$

Anti-triplet

$$m_{\Lambda_c} = m_{\bar{3}} + \frac{2}{3}B\delta m + O(\delta m^2)$$

 $m_{\Xi_c} = m_{\bar{3}} - \frac{1}{3}B\delta m + O(\delta m^2)$

Triplet $m_{\Xi_{cc}^{(*)}} = m_3^{(*)} + \frac{1}{3}C^{(*)}\delta m + O(\delta m^2)$ $m_{\Omega_{cc}^{(*)}} = m_3^{(*)} - \frac{2}{3}C^{(*)}\delta m + O(\delta m^2)$

$$\delta m = m_s - m_{ud}$$

Spectrum of charmed baryons 2018

- RQCD: Some $c\ell\ell$ states below experiment (no continuum limit in 2015).
- Negative parity: J^P = ¹/₂⁻, ³/₂⁻: [ILGTI,1211.6277], [HSC,1502.01845], [RQCD,1503.08440], [TWQCD,1701.02581], [ILGTI,1807.00174].
- Continuum, physical quark mass extrapolation: [Briceno,1207.3536], [ETMC,1406.4310], [Brown,1409.0497], [ILGTI,1807.00174].

Charmed baryon spectrum: RQCD on CLS ensembles

Continuum, infinite volume, physical quark mass limit (very preliminary). Λ_c used to set the charm quark mass. We will switch to D_s for the final results.

Comparison with other continuum limit results

- [Briceno,1207.3536], [ETMC,1406.4310], [Brown,1409.0497], [ILGTI,1807.00174].
- RQCD: (very) preliminary.
- Also \exists preliminary ETMC results (talk by C Alexandrou).

Semileptonic decay form factors of charmed baryons

Only a few lattice results exist so far.

- $\Lambda_c \rightarrow \Lambda \ell \nu_\ell$: [S Meinel, 1611.09696]. Five ensembles at a = 0.085 fm and 0.112 fm. One ensemble close to the physical point, four at $M_\pi \gtrsim 300 \text{ MeV}$.
- $\Lambda_c \rightarrow n\ell\nu_\ell$: [S Meinel, 1712.05783]. Different set of six ensembles at a = 0.085 fm and 0.112 fm with 350 MeV $\gtrsim M_\pi \gtrsim 230$ MeV.
- $\Xi_c \rightarrow \Xi \ell \nu_\ell$: [Qi-An Zhang et al, 2103.07064]. Two ensembles at a = 0.080 fm and 0.108 fm with $M_\pi \approx 300$ MeV.
- $\Lambda_c \rightarrow \Lambda^*(1520)\ell\nu_\ell \ (J^P = \frac{1}{2}^+, \ \Gamma \approx 15 \text{ MeV}, \text{ decays to } N\overline{K}, \Sigma\pi, \Lambda\pi\pi):$ [S Meinel & G Rendon, 2107.13084; 2107.13140]. Three ensembles at a = 0.083 fm and 0.111 fm and $M_\pi \approx 300, 340$ and 430 MeV.

 Λ_b decays have also been investigated!

Six form factors $(f_0(q^2), f_+(q^2), f_\perp(q^2) \text{ and } g_0(q^2), g_+(q^2), g_\perp(q^2))$ are needed to parameterize $\langle \Lambda(p') | \bar{d} \gamma_\mu c | \Lambda_c(p) \rangle$ and $\langle \Lambda(p') | \bar{d} \gamma_\mu \gamma_5 c | \Lambda_c(p) \rangle$ (q = p' - p).

Form-factors for $\Lambda_c \to \Lambda$

SM decay rate predictions

Differential decay rate, forward-backward asymmetry and flat term. [S Meinel, 2107.13084]. $\frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}\mathrm{d}\cos\theta} = A + B\cos\theta + C\cos\theta^{2}, \quad \frac{\mathrm{d}\Gamma}{\mathrm{d}q^{2}} = 2A + \frac{2}{3}C, \quad A_{FB} = \frac{3B}{6A + 2C}, \quad F_{H} = \frac{6A + 6C}{6A + 2C}.$ 0.6 0.16 $-\Lambda_c \rightarrow \Lambda e^+ \nu_c$ 1.0 0.14 $\dots \Lambda_c \rightarrow n e^+ \nu_c$ 0.50.14 0.12 0.10 0.10 0.08 $\Lambda_c \rightarrow \Lambda^*(1520) e^+ \nu_c$ 0.8 0.4 $-\Lambda_c \rightarrow \Lambda e^+ \nu_c$ A_{FB} 0.5 L^H 0.6 $\Lambda_c \rightarrow n \ e^+ \nu_c$ 0.2 $\Lambda_s \rightarrow \Lambda^*(1520) e^+\nu_s$ dl/dq² 0.4 0.1 $-\Lambda_c \rightarrow \Lambda e^+ \nu_c$ $\dots \Lambda_{-} \rightarrow n e^{+} \nu$ Children and Chi 0.2 $\Lambda_{-} \rightarrow \Lambda^{*}(1520) e^{+}\nu$ 0.02 -0.10.0 0.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 q^2 [GeV²] q^2 [GeV²] q^2 [GeV²] 0.6 0.16 $-\Lambda_{*} \rightarrow \Lambda \mu^{+}\nu_{*}$ $- \Lambda_s \rightarrow n \mu^+ \nu_s$ 0.14 0.51.0 0.14 0.12 0.10 0.10 0.08 $\Lambda_c \rightarrow \Lambda^*(1520) \mu^+ \nu_\mu$ 0.4 0.8 $\rightarrow \Lambda \mu^+ \nu_i$ $^{BB}_{VB}$ $\rightarrow n \mu^+ \nu$. ta[™] 0.6 $\rightarrow \Lambda^{*}(1520) \mu^{+}\nu$. $_{0.04}^{\rm TL/dq^2}$ 0.1 0.4 $-\Lambda_c \rightarrow \Lambda \mu^+ \nu_\mu$ $---\Lambda_- \rightarrow n \mu^+ \nu_-$ 0.02 0.2 $\Lambda_c \rightarrow \Lambda^*(1520) \mu^+ \nu_\mu$ -0.10.00 0.250.50 0.75 1.00 1.25 1.50 1.75 0.25 0.50 0.75 1.00 1.25 1.50 1.75 0.00 0.00 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 q^2 [GeV²] q^2 [GeV²] q^2 [GeV²

Gunnar Bali

Charmed baryon decay

Ξ_c decay

[Qi-An Zhang et al,2103.07064]

Total branching fractions obtained within errors \sim 20%, similar to Alice and Belle.

Gunnar Bali

Light octet baryon charges

[RQCD: S Weishäupl, GB, S Collins et al, in preparation]

We computed all octet baryon vector charges (u-d).

Measurements for all (transition) form factors are on disk but need to be analysed.

The axial charge II

Gunnar Bali

Charmed baryon decay

The tensor and the scalar charges ($\overline{\mathrm{MS}}$ at $\mu = 2 \,\mathrm{GeV}$ for $N_f = 3$)

Gunnar Bali

For $m_\ell = m_s$, SU(3) symmetry gives $(g_J^{\Lambda} = 0$ due to isospin symmetry)

$$g_J^p = F_J + D_J, \quad g_J^{\Xi^+} = F_J - D_J, \quad g_J^{\Sigma^+} = 2F_J.$$

This means that

$$2g_J^N/g_A^{\Sigma}-1=D_J/F_J=-\left(2g_J^{\Xi}/g_A^{\Sigma}-1
ight).$$

However, SU(3) symmetry is broken. The violation can be parametrized through

$$\delta_J = \frac{g_J^{\Xi} + g_J^N - g_J^{\Sigma}}{g_J^{\Xi} + g_J^N + g_J^{\Sigma}} \neq \frac{2F_J - 2F_J + D_J - D_J}{4F_J}.$$

Flavour symmetry breaking

SU(3) symmetry breaking is only significant for g_A and can be attributed to the nucleon.

Gunnar Bali

- Hadronic decays difficult (not covered). In principle possible for hyperons (similar to $K \to \pi\pi$) but a major effort.
- Data for light baryon to light baryon matrix elements with arbitrary current exist but need to be analysed.
- Semileptonic decay matrix elements for charmed and bottom baryons have been computed. Should be studied more systematically wrt continuum limit, quark mass and volume dependence.
- In the absence of direct form factor calculations \exists moments of octet baryon light cone distribution amplitudes [RQCD: GB et al,1903.12590]. Particularly interesting for decays of *b* baryons but have also been used for $\Lambda_c \rightarrow \Lambda\gamma$ [Yu-Yi Shi et al,2212.01111].