Lightning Protection of the Artemis Spacecraft

Advisor: Edgar A Bering, PhD University of Houston

Student: Nathan S Roberts, PhD Candidate NASA Johnson Space Center (JSC) Electromagnetic Environmental Effects (E3) Artemis Lead E3 Engineer Orion E3 System Manager

February 18, 2023

い NASA

Artemis Electromagnetic Threats

Altitude

Simple Magnetostatic Approximation

- Assume all of the zigzagging, horizontal components of the lightning channel cancel out.
 - We are left with just a straight vertical wire of current *I*.
- Assume the lightning current is constant and lasts forever.
 - But real lightning flashes and disappears within microseconds.

 For a typical peak current of 100,000 A, at 100 m away, Ampere's circuital law gives 159 amperes per meter (A/m).

Dipole Method of Images I

Dipole Method of Images II

- > Derive fields from potentials/gauge introduced by Ludvig Lorenz (1861-1867).
- > The resulting integrals are complicated and usually must be solved numerically.
- > Only one well-known analytical solution exists in the literature.
 - Rubenstein & Uman (1989) use a Heaviside step function for the source current i(z', t).
 - But the step function is not a very realistic lightning current; it stays switched on forever.

Dipole Method of Images III

magnetic field z = hsource current i(z',t) i, H_{ϕ} $H_{\phi} = \frac{1}{4\pi} \int_{0}^{h} dz' \frac{r}{R^{3}} \left[i \left(z', t - \frac{R}{c} \right)^{\varphi} \right]$ magnetic induction field $\frac{1}{\tau} \int_{-\infty}^{h} dz' \frac{r}{cR^2} \frac{\partial}{\partial t} \left[i \left(z', t - \frac{R}{c} \right) \right]$

- We are working to publish a paper with new exact solutions that decay more naturally.
 - We often gain significant insight from purely analytical solutions.
 - Enables us to more easily manipulate variables and plot diagrams like the one at left.
- But analytical solutions are too simple for more complicated geometries or assumptions.
 - We find numerical/computational methods very convenient for more specific problems.
 - We will take advantage of Finite Element Method (FEM) modeling in the Time Domain (FETD).

magnetic radiation field

Artemis I

 3 lightning protection towers watch over Artemis as it prepares for launch.
 These iconic towers are featured on the Artemis I mission patch.

Launch Pad 39B

DC9

000

Insulator

- Fiberglass to prevent electric current flow.
- Helical strakes
 help stabilize
 tower during
 high winds.
 - Reduces force from vortex shedding.

Catenary Network

Many conductive pathways divide 1 big lightning current into several smaller currents.

Down Conductor

 Carries lightning currents out away from the vehicle and down to ground.

Insulator prevents current traveling down tower near vehicle.

Original Image can be cloudy and dark during a thunderstorm

Luminance Channel

superimposed over clear-skies image

Down Conductor Results

The peak values and waveforms are in reasonable agreement with the measured data.

Peak Values	Measured	Calculated
DC1	-22910 A	-22365 A
DC2	-20410 A	-17362 A
DC3	-13210 A	-11522 A
DC4	-11100 A	-9977 A
DC5	-9570 A	-8615 A
DC6	-10080 A	-11002 A
DC7	-11940 A	-12429 A
DC8	-17350 A	-20631 A
DC9	-17650 A	-20319 A

Down Conductors (DC) 1 through 9

NVZV

ML240 Magnetic Field

- ➤ Some of the main questions about this strike:
 - Was the ML240 magnetic field really that high?
 - Were the ML240 sensors in error?
- Our model confirms that the magnetic fields
 were really that high!

were rearry that might			
Peak Values	Measured	Calculated	
Hx ML240	-34.34 A/m	-34.67 A/m	
Hy ML240	-128.32 A/m	-105.69 A/m	
Hmag ML240	+131.81 A/m	+149.12 A/m	

Time [µs]

Questions?