

# **RIXS studies on Two-dimensional Magnetic Materials**

Chamini Shammi Pathiraja<sup>1</sup>, Jayajeewana Neranjana<sup>1</sup>, Yi-De Chuang<sup>2</sup>, Yu Cheng Shao<sup>3</sup>, Byron Freelon<sup>1</sup>

Department of Physics and Texas Center for Superconductivity, University of Houston
Advanced Light source, Lawrence Berkeley National Laboratory
National synchrotron radiation research center, Taiwan

#### What is Spin :

UNIVERSITY of HOUSTON







#### What is Spin :

UNIVERSITY of HOUSTON



d orbital

m<sub>s</sub> = + ½ m<sub>s</sub> = - ½



# **Fridge Magnets**



#### In 2004, graphene was fabricated via scotch tape exfoliation ;



Crystal structure of graphene<sup>1</sup>

- First Two-Dimensional (2D) semiconductor material
- Layered material arranged in a honeycomb-like pattern
- Unique structural, mechanical and electronic properties
- > Shows magnetism in ground states

As a result of finding other layered materials, Magnetism up to monolayer in CrI<sub>3</sub> was discovered in 2017.<sup>3</sup>

## Chromium Trihalides CrX<sub>3</sub> (X = Cl, Br, I):

# UNIVERSITY of HOUSTON





Crl<sub>3</sub> - 200 K

#### **Incidence :**



2. J. Am. Chem. Soc., 128, 5001 (2006).

Chamini Shammi

#### X-ray Absorption Spectroscopy :

UNIVERSITY of HOUSTON



#### **RIXS** measurements on CrX<sub>3</sub> (X=Cl, Br and I) :

UNIVERSITY of HOUSTON



Chamini Shammi

**Atomic Multiplet Calculation (Quanty) :** 

- Quanty is a many body script language and it can be used to simulate core electron spectroscopies such as XAS, XES, RIXS, ELD etc.
- ✤ For CrX<sub>3</sub> system, multiplet ligand field theory was used in the XAS and RIXS simulations.
- In quanty simulations, the basis sets are used for the Fermionic modes and Bosonic nodes (molecular orbitals from Hatree-Fock calculations)

NF = 20 --Number of spin orbitals NB = 0 --Number of phonon modes

Quanty use second quantization to define it's operators and the spectra are implemented by calculating the Green's function.

$$G(\omega) = \left\langle \psi_i \right| T^{\dagger} \frac{1}{\omega - H + i\Gamma/2} T \left| \psi_i \right\rangle$$

In quanty simulation, the Hamiltonian and eigen states can be calculated for different parameters such as;

Atomic parameters  $(U, F_{dd}^0, F_{dd}^2, F_{dd}^4, G_{pd}^1, G_{pd}^3, SOC)$ Crystal field parameters ( 10Dq ) LMCT parameters (  $\Delta, V_{eg}, V_{t2g}$  ) Magnetic field and exchange field etc



## **Calculating energy scales:**



## **Energy scales** ...

> Racah Parameters (Interorbital coulomb interactions)

$$A = F_{dd}^{0} - \frac{F_{dd}^{4}}{9}$$
$$B = \frac{9 * F_{dd}^{2} - 5 * F_{dd}^{4}}{441}$$
$$C = \frac{5 * F_{dd}^{4}}{63}$$

- ➢ Interatomic exchange interaction  $J_H = \frac{F_{dd}^2 + F_{dd}^4}{14}$
- > Coulomb repulsion  $U_{dd} = F_{dd}^0 - \frac{2}{63} \left( F_{dd}^2 + F_{dd}^4 \right)$

$$U_{pd} = F_{pd}^0 - \frac{1}{15}G_{pd}^1 - \frac{3}{70}G_{pd}^3$$

## High resolution data analysis :



#### **Conclusion :**

□ CrX<sub>3</sub> (X=Cl, Br and I) are becoming great potential candidates for spintronics and magnetoelectronic devices.

□ RIXS is a much more accurate approach to obtain key energy scales than XAS and optical spectras.

□ Using Quanty ELDs, we can reliably extract these energy scales and reconstruct RIXS spectra.

#### **Acknowledgement :**

Funding : NSF Synchrotron radiation facilities :





# THANK YOU ...



#### When comparing to other scattering techniques, RIXS has number of unique features.

- 1. RIXS exploits both the energy and momentum dependence of the photon scattering cross-section.
- 2. RIXS can probe a very broad class of intrinsic excitations of the system under study
- 3. RIXS can utilize the polarization of the photon.
- 4. RIXS is element and orbital specific.
- 5. RIXS is bulk sensitive.
- 6. RIXS needs only small sample volumes.





## From XAS to Resonant Inelastic X-ray Scattering (RIXS) ...

UNIVERSITY of HOUSTON



Video : A "slow" explanation of XAS and RIXS through simplified Atomic Schematic

#### What is RIXS:

Kramers - Heisenberg cross section :

$$\frac{d^2\sigma}{d\Omega d\omega} \propto \left| < f|H_{int}|i> + \sum_{|n>} \frac{< f|H_{int}|n> < n|H_{int}|i>}{E_i + \hbar\omega_i - E_n + i\Gamma} \right|^2$$

RIXS Intensity (scattering amplitude) :

- $\epsilon$  polarization
- $\sigma$  cross section of the scattering

H<sub>int</sub> describes interaction between photon and electrons

- i, n and f initial, intermediate and final states,
- $E_i$  ,  $E_n$  , and  $E_f$  are the energies of the corresponding eigenstates,  $\Gamma$  is the lifetime broadening of the intermediate state.



<sup>2.</sup> RevModPhys.83.705 · Source: arXiv





- Two-Dimensional van der Waals material
- Ferromagnetic (FM) with S = 1
- Easily cleavable
- Curie temperatures Tc are higher than CrX<sub>3</sub> (80 and 98 K for VCl<sub>3</sub> and VI<sub>3</sub> monolayers, respectively).
- VI<sub>3</sub> is a Mott insulator which exhibits a SPT from monoclinic to rhombohedral at 79 K
- Long-range FM ordering appears at  $Tc \approx 50$  K.

- Plan to perform series of RIXS measurements on VX<sub>3</sub> at the ALS qRIXS end station in order to obtain a comparison with the S=3/2 CrX<sub>3</sub> systems.
- We anticipate that RIXS will allow informative direct comparisons between Mott insulators and the metallic 2D magnets.
- Currently, we have the access to high quality  $VI_3$  single crystals through the commercial laboratories.