
T6.5 architecture - Conceptual design v2
This document provides an overview of the conceptual design for T6.5 architecture,
from the digital twin engine �DTE� system context to T6.5 components, following a top-
down approach. The conceptual design has been organized according to the
prescriptions of the C4 model.

System context
The system context defines the boundaries of the DTE system, and its interfaces with
the surrounding environment.

https://c4model.com/
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Components of the AI container (T6.5)
The AI subsystem in the proposed DTE is intended for data-driven DT models, and is
mainly devoted to two macro operations: training and deployment of ML models.
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