
T6.5 architecture - Conceptual design v2
This document provides an overview of the conceptual design for T6.5 architecture,
from the digital twin engine �DTE� system context to T6.5 components, following a top-
down approach. The conceptual design has been organized according to the
prescriptions of the C4 model.

System context
The system context defines the boundaries of the DTE system, and its interfaces with
the surrounding environment.

https://c4model.com/


DT developer
[Person]

Defines use case-specific DT

Infrastructure 
provider

[SW and HW system]

IaaS + PaaS.
Manages cloud and HPC 

resources, including storage,
data streaming, authentication,
and computation (e.g., CPUs, 
GPUs, quantum computing). 

DTE PaaS
[Software system]

PaaS on top of which DT
applications are developed 
(it is a PaaS for the DT dev).

WP5 + WP6 + WP7

Edge IoT
[SW and HW system]

Optional infrastructure for
preliminary collection and

processing of data collected
from the physical twin (e.g.,
use case's on-prem servers

and IoT network)

Gathers
data

Real world
[Generic system]

Physical twin. Data can be 
(batched) datasets or

data streams.

Gathers
(raw)
dataAuthenticates

[System Context] Digital twin engine (DTE) - Logic relations

UI

Authenticates

Develop, build, test, monitor,
deploy DT application.

DTE SaaS
[Software System]

DT applications + UI. WP4

Builds
DT

application

Accesses
workflow
services

Deploys DT
application 

Accesses
storage,

computation,
services

Digital Twin Engine
[System context]

Auths

Deploys
and runs
workflows

(e.g.,
training)

Includes use
case-specific 

models

Scientist
[Person]

Supports her research with
domain-specific DTs. Interacts

with "living "DTs".

Authenticates Once deployed,
accesses "living DT"

Repository
[Software System]

Stores DT applications

Pushes / pulls
DT applications

Containers in the DTE



DT developer
[Person]

Defines use case-specific DT

Workflow comp.
and engine

+ UI
[Container]

Define, deploy and run
trigger-based workflows.

Provides a UI for DT
developer, and workflows

registry..

DTE SaaS
[Software System]

DT applications + UI. WP4

Infrastructure 
provider

[SW and HW system]

Manages cloud and HPC 
resources, including storage,

data streaming, authentication,
and computation (e.g., CPUs, 
GPUs, quantum computing). 

Storage
[Container: Oracle, etc.]

Big data (e.g., dataset batches)
or buffer for real-time input
data streams, used to train

and operate the DT. 

Env manager
[Container: Airflow,
Kubernetes, etc.]

Deploys a number of 
workflows used to manage

different aspects of the DT (e.g.,
training, inference), and runs

the deployed workflows. 

Edge IoT
[SW and HW system]

Optional infrastructure for
preliminary collection and

processing of data collected
from the physical twin (e.g.,
use case's on-prem servers

and IoT network)

Real world
[Generic system]

Physical twin. Data can be 
(batched) datasets or

data streams.

Gathers
(raw)
data

Gathers
data

Authenticates

AI / ML

[Container]

Provides the user with AI / ML
tools to perform distributed ML

training and HPO.

Data fusion
and visualization

[Container]

Fusion of different data
formats and visualization of

gridded data.

Data and
computation
abstraction

[Container: Kafka,
Spark, OpenEO,
Horovod, etc.]

Provide abstractions to access
data stored on the infrastructure

and computational resources
(e.g., GPUs, nodes).

Often both abstraction are
provided by the same tool.

Accesses data
(R/W) and 

computation
(separately)

WP6 - DTE core (middle-level PaaS)
[Software System]

Triggers
(separately)

Accesses data
from storage

Accesses 
computational

resources

Defines MLOps
and visualize

results

Defines big data
processing jobs

Defines data fusion and
visualization

directives

Defines quality and validation
directives for current DT

Deploys and runs
 "training",

"inference", and other
workflows

Monitors events
(e.g., new training

data is available, or
clock time)

Authenticates

Develop, build, test, monitor,
deploy DT application.

Defines, deploy, run workflows
(e.g., training, validation,

inference)

Builds DT
application

Accesses
workflow
services

Includes use
case-specific 

models

Scientist
[Person]

Supports her research with
domain-specific DTs. Interacts

with "living "DTs".

Authenticates

[Container] DTE core (WP6)

Repository
[Software System]

Stores DT applications

Quality
and validation

[Container]

Quality as a service for
high-level validation of trained
ML models, data provenance,

validation of the overall DT.

Big data analytics
[Container: Spark,

OpenEO, etc.]

Manages the processing
of large amounts of data 
(e.g., for pre-processing).

DT modelling DT support

Once deployed,
accesses "living DT"

Thematic module
[Container]

Provides domain-specific tools.
WP7 (higher-level PaaS)

Accesses
resources

Pushes / pulls
DT applications

Components of the AI container (T6.5)
The AI subsystem in the proposed DTE is intended for data-driven DT models, and is
mainly devoted to two macro operations: training and deployment of ML models.



Workflow
composition

[Container: OSCAR,
etc.]

Implements user-defined DT 
workflows, which are triggered

according to used-defined
triggers (e.g., new data is 
available). Also manages

workflows registry.

Data and
computation
abstraction

[Container: Kafka,
Spark, OpenEO,
Horovod, etc.]

Provide abstractions to access
data stored on the infrastructure

and computational resources
(e.g., GPUs, nodes).

Often both abstraction are
provided by the same tool.

[Component] DTE - AI / ML workflow (T6.5)

AI / ML workflow
[Container]

HPO
[Component: Ray Tune,

etc.]

Collection of HPO algorithms, 
satisfying different trade-offs.

Distributed ML
[Component: Horovod,

RaySGD, etc.]

Collection of distributed ML
training algorithms, 

satisfying different trade-offs.

Metrics logger
[Component: Mlflow, 

etc.]

Unified logging of training/
validation metrics.

Models registry
[Component: Mlflow, 

etc.]

Manages ML models life cycle:
storage, versioning, staging,

environment metadata, deletion. 

Accesses data (R/W) 
and computation

Accesses
computation

Accesses data
(R/W)

Accesses data (R/W)

Visualizes
results from

training

ML training
and validation

[Component: TensorFlow,
PyTorch, Python, etc.]

Manages ML training and
validation operations, saving
metrics and trained models,
re-training, distributed ML,

HPO.

Triggers
training

and performs
validation

Distributes
training

and validation

Defines DT training and
validation details

Splits dataset
and/or accesses
dataset/streams

Logs
metrics

Saves
model

snapshots

ML model
deployment

[Component: Mlflow, 
Docker, etc.]

Deploy a trained ML model,
with its own environment

and optionally refine it with new
incoming data (online learning).

Loads
pre-trained

model

Logs
metrics

(monitoring)

Reads
input
data

stream

Distributes
inference

Defines a pre-trained ML 
model to deploy for real-time 

inference

Quality
and validation

[Container]

Quality as a service for
high-level validation of trained
ML models, data provenance,

validation of the overall DT.

Triggers

Assesses trained 
models

TBD: how to validate a
deployed ML model?

Workflow comp.
and engine

+ UI
[Container]

Define, deploy and run
trigger-based workflows.

Provides a UI for DT
developer, and workflows

registry..

Gets deployed
as a step

of the "training"
workflow

Gets deployed as a step
of the "inference"

workflow

Triggers

Accesses validation data (R)


