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• from 5 Joules / operation (vacuum tube computer, 1940s)
• to 500pJ / op (IBM Blue Gene, 2010)
• to 5pJ / op (GPUs, 2020)
• → 1,000,000,000,000 times better!



• Massive parallelism (1011 neurons)
• Massive connectivity (1015 synapses)
• Low-speed components (~1 – 100 Hz)

>1016 complex operations / second → 10 PetaFLOPS
10 W

1 PFLOP/W

1.5 kg

„K computer“
(RIKEN, Japan)

10 PetaFLOPS
10 MW
1 GFLOP/W

100s of tonsEnergy efficiencies

• Computer system level: 10-9 J/operation

• Chip: 10-12 J/operation 

• Brain: 10-15J/operation





▪ C. Mead (CalTech, 1980`s – 90`s): 
“Neuromorphic Electronic Systems”, Proc. IEEE

▪ Silicon VLSI technology can be used to 
build circuits that mimic neural functions 

▪ Silicon primitive: transistor – functional similarities to 
neurons

▪ Building blocks: neurons, axons, ganglions, 
photoreceptors, …

▪ Biological computational primitives: logarithmic 
functions, excitation/inhibition, thresholding, winner-
take-all selection …

▪ Encoding information in the form of "spikes"



1nJ      100pJ                      10pJ     1pJ                                  100fJ            1fJ

© K. Roy, BRIC

• In-Memory Computing
• Neuromorphic Devices
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Energy gap is 
shrinking!

Energy per operation







→

Fixed Δt → “frame 
rate”



Over-sampling 

Under-sampling 





• 135 million photoreceptors – detection threshold (rod): 1 photon

• 1 million ganglion cells in the retina process visual signals received from the photoreceptors.

• Analog gain control, spatial and temporal filtering: ~ 36 Gb/s HDR raw image data is compressed into ~ 20 Mb/s spiking 
output to the brain

• Retina encodes useful spatial-temporal-spectral features from a redundant, wide dynamic range world into a small 
internal signal range. Multiple “pathways” – Transient, Sustained

• Power consumption: ~ 3.5 mW
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HOW TO TO EFFICIENTLY ACQUIRE A DYNAMIC SCENE?

• Mimicking the “transient (Magno-cellular) pathway” 
of the human visual system 

• ➔ Pixel-individual acquisition of scene dynamics

NOT ONE SAMPLING RATE FOR ALL PIXELS (=FRAME RATE) … 
• … but many (= as many sampling rates as number of pixels), and
• sampling rates can vary on the fly and pixel-individually

HOW? PUT THE PIXEL IN CONTROL!
EACH PIXEL INDIVIDUALLY CONTROLS ITS OWN SAMPLING BASED ON THE INPUT SIGNAL

• Change sampling domain (from time to amplitude) 
• Pixel does not need any external timing signals – operates autonomously
• ➔ Pixel-wise adaptive non-uniform sampling

• Encode information in "events"
• Pixel that is not stimulated visually does not produce output
• Complete suppression of temporal data redundancy



•

•

•

•

•

•



❑ Partially pinned photodiode

❑ Subthreshold MOS based logarithmic photocurrent-to-voltage conversion

❑ ADM / level-crossing sampler

❑ Voltage comparators (for both polarities)

❑ Logic with ADM control and interface to the read-out periphery
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Asynchronous Delta 
Modulation (ADM) sampling

Programmable contrast 
threshold

Change polarity captured
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Readout is not a “scan”, asking pixels for data values like 

in conventional imagers

Individual autonomous pixels spontaneously and 

asynchronously request readout via an arbitrated

readout system when they have information to convey

Asynchronous digital handshake protocol out of the 

pixel array

Readout system needs to handle up to giga-events per 

second (GEPS) for large array (>1MP) sensors
Digital
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BSI 3D STACKED

FSI PLANAR

ACADEMIA
RESEARCH

START-UPS INDUSTRY
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imager pixel event pixel



▪ Introduced in 2013 with 1.2µm pixel pitch, now reaching <1µm
▪ Pixel array on top, readout, ADCs, logic circuits components on bottom wafer

▪ Optimized processes (CIS, mixed-mode CMOS)

▪ Smaller die and camera module size

▪ Initially array periphery TSV connections between wafers

▪ Now pixel-level connection with direct Cu/Cu bonding

|Courtesy Status of the CIS industry| www.yole.fr | ©2018 

http://www.yole.fr/


→ Backside 
illumination will 
enable ~ 100% fill-
factor!

Front-side 
illuminated (FSI)

Stacked
BSI

Silicon bulk Silicon bulk

Backside
illuminated (BSI)

Silicon bulk

→ Backside 
illumination will 
enable ~ 100% fill-
factor!

Silicon bulk

Bonding 
Interface

Upper 
Wafer

Lower 
Wafer

Silicon bulk

Bonding 
Interface

Middle
Wafer

→ Backside 
illumination will 
enable ~ 100% fill-
factor!

Hybrid stacked
BSI

Silicon bulk

Interco upper to 
lower wafer

Connection within pixels 
becomes possible

|Courtesy Status of the CIS industry| www.yole.fr | ©2018 

3D IMAGE SENSOR PROCESS

Passive carrier Active carrier Active carrier & pixel connection

http://www.yole.fr/


❑ Pixel-level Cu-Cu connection

❑ PD + NMOS on top CIS

❑ All other pixel circuitry (~50T) 

on bottom CMOS

180nm FSI CIS

15µm pitch

25% fill factor

90nm BSI CIS

on 40nm CMOS

4.86µm pitch

>77% fill factor
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2018 2020 2022 2024 2028 20302026

5µm 3µm 2µm 1µm

2nd wafer CMOS 40nm 28nm 16nm 10nm

low to mid resolution – low-power edge vision applications 

BSI 2-wafer stack BSI 3-wafer stackResolution

Pixel pitch

→ Backside 
illumination 
will 
enable ~ 
100% fill-
factor!

Silicon Bulk

Interco 2nd

and 3rd layer

Silicon Bulk

Triple stack BSI

TSV

TSV TSV



→

SENSOR COMPUTE

Neuromorphic processor
Direct AER input (spiking NN)
AI Algos for object detection and tracking, 
motion analysis, optical flow, attention 
tracking, surveillance, gesture recognition, …

Pixel Array Event Signal 
Processor I/O Application Processor

Continuous EVT Stream
Embedded vision applications

Anti-
Flicker

SpatioTemporal
Contrast
Filtering

Event-rate
Control

Event 
compressi

on

Digital 
crop

MIPI

AER

Pixel Array
No pre-

processing
(by-pass)

I/O

Microcontroller
Direct 2D event frames with 
controllable rate and activity 
thresholds. 
Smart wake-up, people monitoring, 
CNN edge-AI applications

CPI (DCIM)

Pixel Array Event Signal 
Processor I/O

Histogram/
Histo3D





inherent data compression – sparse encoding

focus on relevant dynamic data

fast pixel reaction times

high resolution timestamping (1us)



F R A M E - B A S E D E V E N T - B A S E D



Track moving objects in the field of view. Leverage the 
low data-rate and sparse information provided by 
event-based sensors to track objects with low
compute power.

Continuous tracking in time: no more "blind spots" 
between frame acquisitions
Native segmentation: analyze only motion, ignore the 
static background



F R A M E - B A S E D E V E N T - B A S E D



Rediscover this fundamental computer vision building 
block, but with an event twist.

Understand motion much more efficiently, through
continuous pixel-by-pixel tracking and not sequential
frame by frame analysis anymore.

17x less power compared to traditional image-based
approaches
Get features only on moving objects



F R A M E - B A S E D E V E N T - B A S E D





( n o t  s o l e l y  re l a t e d  t o  ‘P re tt y  P i c t u re ’  p a ra m e t e rs )

(Enhanced 3D Stacking focusing on full solution at edge)





Delivers time-resolution equivalent to 200,000+ 
frames per second, live, while generating orders of 
magnitude less data than conventional high-speed 
cameras. 

Analyze finest motion dynamics hiding in ultra fast 
processes.

5µs temporal resolution
(200,000 frames-per-second equivalent) 



Typical use cases: Motion monitoring, Vibration monitoring, Frequency analysis for predictive maintenance

• Remotely – no need to access or touch the object

• Measure multiple frequencies simultaneously at different parts of 
the object / scene

• From below 1Hz to tens of kHz

• Industrial process monitoring, predictive maintenance, …



•

•

•

•

•



Identify and track small particles (typ. size 10pixels) 
with fast motion in HDR environment. 

Exploits high time resolution and wide intrascene
dynamic range

Up to 200k fps rendering (5µs time resolution)
Simulatenous XYT tracking of all particles



•

•

•

•

https://www.xperi.com/




•

•

•

•



•

•

•

•

•



•

•

•







E V E N T - B A S E D

ULTRA-LOW LATENCY
High temporal resolution allows lower latency detection
Inference at any rate is virtually possible
Only limited by computation time

EASIER GENERALIZATION
Light invariance allows for easier generalization
E.g. models trained at day light perform with night scenes

REDUCED COMPUTATION
Learn simpler patterns and features
No need to learn invariance to background (for static camera)



50Hz inference VGA sensor on mobile processor (cfr. Frame-based Mobilenet-v2 13Hz)

Event-based benefit #1: 

Temporal Resolution

• Low-latency detection

• Inference at high rates



Event-based benefit #2: 

Light invariance

• Event sensors react to relative changes, independently of absolute light levels
• Light invariance allows for easier generalization of ML models

Day

Night



Light invariance

Inference on night data with network trained only with day data

Trained only with day data



Event-based benefits #3: 

Sparsity

▪ Sparse input allows for reduced computation

▪ Learn simpler patterns

▪ No need to learn invariance to background

Frames: Complex Background
Complex Texture

Events: Only relevant contrast 
features



•

•

•



F R A M E - B A S E D E V E N T - B A S E D

https://www.theverge.com/2019/10/4/20898773/aaa-study-automatic-emergency-braking-
pedestrian-detection

https://www.theverge.com/2019/10/4/20898773/aaa-study-automatic-emergency-braking-pedestrian-detection
https://www.theverge.com/2019/10/4/20898773/aaa-study-automatic-emergency-braking-pedestrian-detection




Image and video deblur





Multi Depth

Action /  Sports Low Light face + Text

Night time / HDR
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