RD51 Common Project

Atsuhiko Ochi 02/03/2023 DRD1 kick-off meeting

Overview of RD51 Common Projects

- The RD51 Common Project Funding is intended to support a project cost in the areas of common interest to the RD51/MPGD community
 - Technology R&D projects towards developments of novel techniques, improvements of existing technologies, characterization methods and dedicated tools;
 - Development and optimization of MPGDs for novel applications;
 - Improvement of the MPGD technology transfer to industry.
 - The program will fund only generic projects not ones related to experiments.
- Transversal collaborations among groups from different countries, experiments, physics areas of interest encouraged and supported by RD51
- Started since 2011
- 24 projects are approved in these 12 years.

RD51 Common Project list

Year Title	Contact person
2011 A low mass microbulk with real XY strips structure	Theo Geralis
MPGDs technology laboratory for training, development, fabrication, applications and innovation	Rafael Gutierrez
Thin and high-pitch laser-etched mesh manufacturing and bulking	Paul Colas
Development of innovative resistive GEM alpha detectors for earthquakes	Guy Paic
Large-area THGEM detector evaluation with SRS electronics	Amos Breskin
2012 R&D on large area GEMs for the ALICE TPC upgrade	Chilo Garabatos Cuadrado
High resolution UV scanner for MPGD applications	Dezso Varga
2014 Measurement and calculation of ion mobility of some gas mixtures of interest	Chilo Garabatos
Fast Timing for High-Rate Environments: A Micromegas Solution	Sebastian White
Development of a novel Micro Pattern Gaseous Detector for Cosmic Ray Muon Tomography	Paolo lengo
2016 Sampling Calorimetry with Resistive Anode MPGDs (SCREAM)	Maximilien Chedeville
New Scintillating gases and structures for next-generation scintillation-based gaseous detector	Diego Gonzalez Diaz
2017 Development of modular multilayer GEM units	Alexander Milov
2018 Modular & General purpose Ultra Low Mass GEM Based Beam Monitors	Gabriele Croci
DLC based electrodes for future resistive MPGDs	Yi Zhou
Study of negative ion mobility and ion diffusion for Negative Ion TPCs	André Cortez
2019 Discharge Consortium in quest for Spark-Less-Avalanche-Microstructures	Piotr Gasik
Pixelated resistive bulk Micromegas with integrated electronics	Fabrizio Petrucci
Resistive materials and resistive-MPGD concepts & technologies	Shikma Bressler
2020 Optical readout studies for negative ion TPCs	Florian M. Brunbauer
Large area high-granularity segmented mesh microbulk forfuture rare event searches	Javier Galan
2021 Comprehensive studies of the glass, ceramic- and kapton-THGEMs in high- and low-pressure TPCs	Pawel Majewski
Development for Resistive MPGD Calorimeter with timing measurement	Piet Verwillligen
2022 Study of MPGD performance in liquefied noble gases	Vitaly Chepel

Collaborative work between different institutes

- More than 3 institutes should be joined in one project.
 - It makes good connections between different institutes in the RD51 collaborators in world wide
- For example; SCREAM project (2018 CP project)
 - Collaborative work between
 - IN2P3/LAPP (France) → Readout, Electrical tests
 - NCSR (Greece) → Detector caractarization
 - Saclay (France) → Test infrastructures
 - Weizmann (Israel) → Detector design, production
 - U. Aveiro (Portgal) → Detector development, simulation
 - U. Coimbra (Portgal) → Test beam, detector development

Highlights of the Blue sky

150

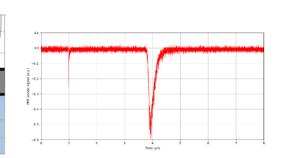
5 100

50

lons' drift time (ms)

 Study of negative ion mobility and ion diffusion for Negative Ion TPCs (2018–)

Typical time-of-arrival spectra in


pure CF4 for a VGEM of 35V, a

E/N of 30 Td and 8 Torr of total pressure at room temperature. DRD1 kick-off 02/03/2023

Highlights of the Blue sky

Study of MPGD performance in liquefied noble gases (2022–)

- 1. LIP-Coimbra, Vitaly Chepel, vitaly@uc.pt
- 2. Weizmann Institute of Science, Amos Breskin,

 skin@weizmann.ac.il and Shikma Bressler,

 ressler@weizmann.ac.il

 tys-University of Coimbra, Joaquim Marques Ferreira dos

ys-University of Coimbra, Joaquim Marques Ferreira dos <u>nf@uc.pt</u>, Fernando Domingues Amaro, <u>famaro@uc.pt</u> and Maria Bernardes Monteiro, <u>cristinam@uc.pt</u>

Figure 1. A double-phase TPC with a floating THGEM. (Left) – the principle; (Right) – preliminary results with a 0.4 mm thick THGEM, 0.3 mm holes and 1 mm pitch in liquid xenon. The ionization (in the liquid) is due to alpha-particles; the VUV photons are detected with a PMT. A fast pulse at $t=1\,\mu s$, corresponding to primary scintillation in the liquid, is followed by the secondary scintillation in gas.

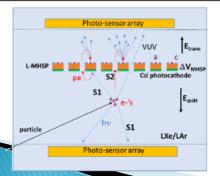


Figure 2. A single-phase TPC with a L-MHSP (or L-COBRA, shown) coated underneath with Csl. Ionization electrons and UV-induced photoelectrons from Csl are collected into the L-MHSP holes, and drift towards the anode strips. VUV photons emitted by EL + small avalanche near the strips, are detected by the top photo-sensors. Another fraction of S1 photons are detected by bottom photo-sensors.

Highlight the support to basic activities of common interest

 Measurement and calculation of ion mobility of some gas mixtures of interest (2014-)

RD51 Institutes:

- 1. GSI, contact person: Chilo Garabatos, chilo.garabatos.cuadrado@cern.ch
- 2. LIP Coimbra (Portugal), contact person: André Cortez, andre.cortez@coimbra.lip.pt
- 3. University of Bursa (Turkey), Rob Veenhof, rob.veenhof@cern.ch
- 4. VECC, Kolkata (India), Tapan Nayak, tapan.nayak@cern.ch

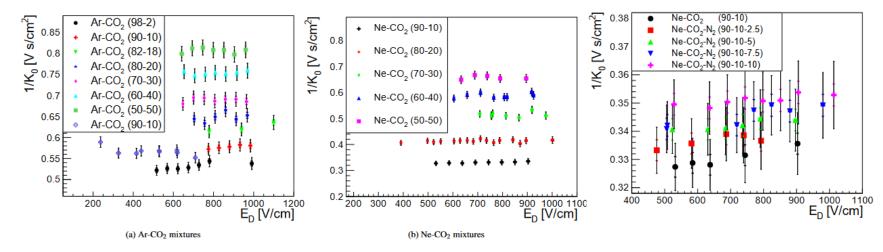
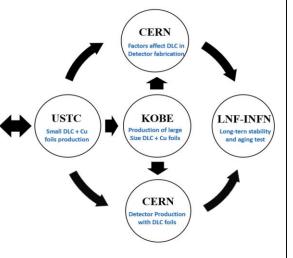


Figure 5: Inverse reduced ion mobility for Ar-CO₂ (Ne-CO₂, respectively) mixtures. All closed (open, respectively) points are measured with a drift length of 21.35 mm (25.31 mm, respectively). The water content in different measurements ranges from 34 ppm to 98 ppm (120 ppm to 180 ppm, respectively) for the Ar-CO₂ (Ne-CO₂, respectively) mixtures. The coloured error-bars represent the error due to the drift length uncertainty, while the black error bar represents the combined uncertainty of all other sources.

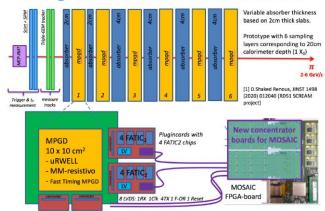

[ArXiv:1804.10288v2]

Highlight the clustering research teams

LICP

DLC Common project (2018–)

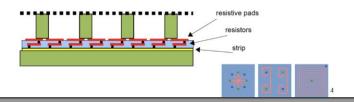
- LICP: on the basis of theoretical calculation and simulation, give USTC team a guidance of the work
- USTC: produce different bare DLC foils with different surface resistivity and also DLC foils with Copper coating (DLC+Cu)
- Kobe University: produce large size DLC & DLC+Cu foils in order to study the reproducibility of the process tuned on small prototypes and the uniformity of the surface resistivity of the DLC
- CERN: study the behavior and changes of DLC properties under manufacturing processes foreseen for MPGD construction (i.e. <u>uRWELL</u>, resistive GEM and THGEM)
- LNF-INFN: study stability of bare DLC properties under current drawing on bench (w/irradiation)
- CERN: produce detectors with DLC foils
- LNF-INFN: perform aging and spark test of DLC based detectors (with different radiation)
 - Clustering group working on the same fields to increase the impact
 - Now Resistive DLC electrodes are grown to one of common technology in MPGD community


Connections & Synergies between CPs

 Development of Resistive MPGD Calorimeter with timing measurement (2021–)

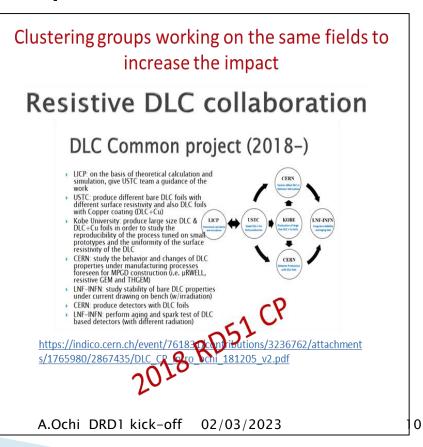
RD51 Institutes:

- 1. INFN sez. Bari, contact person: piet.verwilligen@ba.infn.it
- 2. INFN sez. Roma III, contact person: mauro.iodice@roma3.infn.it
- 3. INFN LNF Frascati, contact person: giovanni.bencivenni@lnf.infn.it
- 4. INFN sez. Napoli, contact person: massimo.dellapietra@na.infn.it


Design of MPGD-based HCAL cell

 Sampling Calorimetry with Resistive Anode MPGDs (SCREAM) (2016-)

RD51 Institutes


- 1. CNRS/IN2P3/LAPP, Maximilien Chefdeville chefdevi@lapp.in2p3.fr
- 2. Weizmann Institute of Science, Shikma Bressler shikma.bressler@weizmann.ac.il
- 3. NCSR Demokritos/INP, Theodoros Geralis geral@inp.demokritos.gr
- 4. CEA/IRFU, Maxim Titov maxim.titov@cea.fr
- 5. University of Aveiro, Joao Veloso joao.veloso@ua.pt
- 6. University of Coimbra, Fernando Amaro famaro@uc.pt
 - Control of the resistance through R-pattern: tuned for minimal charge-up & spark suppression

Highlight the seed of long term collaboration and activities

- promoting collaboration between institutes
- promoting self-sustaining collaborations with large potential and impact

Conclusion

- The RD51 Common Project Funding is intended to support a project (not only cost) in the areas of common interest to the RD51/MPGD community
- RD51 CP supports blue sky projects, basic activities of common interests, clustering research items and seeds of long term activities.
- Transversal collaborations among groups from different countries, experiments, physics areas of interest encouraged
- We strongly believe that RD51 CP structure should be implemented in DRD1.