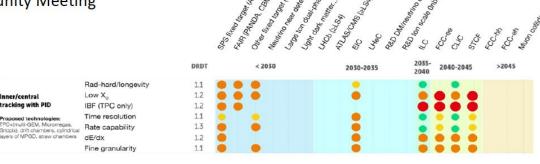
TPCs

DRD1 survey analysis

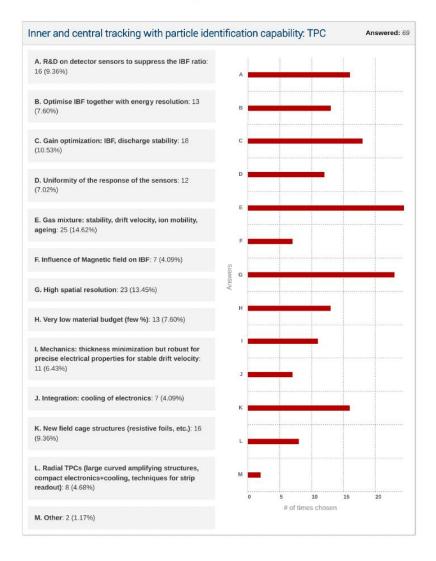

F. Garcia (Uni Helsinki)


Facility	Technologies	Challenges	Most challenging requirements at the experiment
HL-LHC	MPGD	High spatial resolution, high rate/occupancy, radiation hardness, low mass	LHCb option: replace Scintillating Fibre tracker Spatial resolution:70 μm bending plane
Higgs-EW-Top Factories (ee) (ILC/FCC-ee/CepC/SCTF)	TPC+(multi-GEM, Micromegas, GridPix), Drift Chambers, Cylindrical layers of MPGD	Ultra-lightweight inner or central tracker, high spatial resolution, high rate/occupancy, radiation hardness, low mass, transparency, cluster counting, TPC continuous mode at high rate, (IBF x Gain) ~1	Inner tracker (SCTF) Fluxes: $\geq 10 \text{ kHz cm}^{-2} \text{ s}^{-1}$ Time resolution: 1 ns $X/X0 = 1\%$ Spatial resolution: $\sim 100 \mu \text{m}$ Central tracker (CepC) Max. rate: $> 100 \text{ kHz/cm}^2$ Spatial resolution: $\sim 100 \mu \text{m}$ Time resolution: $\sim 100 \text{ ns}$ dE/dx: $< 5\%$ Particle separation with cluster counting at 2% level
Rare processes, atomic and nuclear physics (SPS Kaons: K ⁺ Phase, K- Phase, Mu2eII/COMET-II, ELENA)	TPC, straw tubes	High spatial resolution, occupancy, fast/precise timing, radiation hardness, low mass, Gd-deposited MPGD detectors	Max rate = 500 kHz/straw (Mu2e II): Thinner straw material: 8 μm X/X0 ~ 0.02% per layer, X/X0 ~ 1% total (COMET+): Diameter = 4.8 mm Trailing time resolution = 1 ns per track
Hadron and nuclear physics (EIC, AMBER, PANDA and CMB@FAIR, PRES MAINZ, NA60+	Micromegas, GEM, μ-RWELL, straw tubes	High spatial resolution, good timing, radiation hardness, tolerance to magnetic field	(EIC) Max rate = 100 kHz/cm ² Spatial resolution ~50 μm X/X0 = 5% dE/dx=12%, continuos running

Inner and central tracking with particle identification capability: TPC

Main Challenges

- Planar and Cylindrical MPGDs
 - Multi-GEMs
 - Resistive GEMs
 - Micromegas
 - μ-RWELLs
 - μ-PICs
 - FTM
- Straw tubes trackers
- Dirft cambers
- RPCs



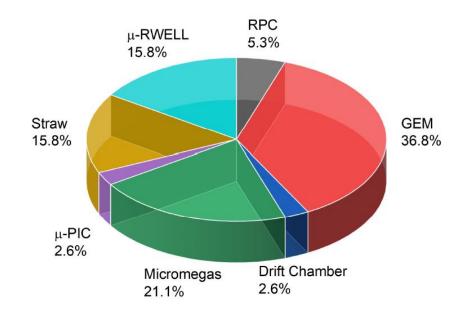
- High-rate capability
- · High spatial and time resolution for precision momentum measurement
- Particle identification (PID)
- Minimal material Budget
- Lightweight mechanical support structures and low Cost
- Aging and radiation hard
- Large area coverage and operation stability
- Use of eco-friendly gas mixtures
- · Highly scalable readout electronics and its miniaturization

Inner and central tracking with particle identification capability: TPC

Survey results

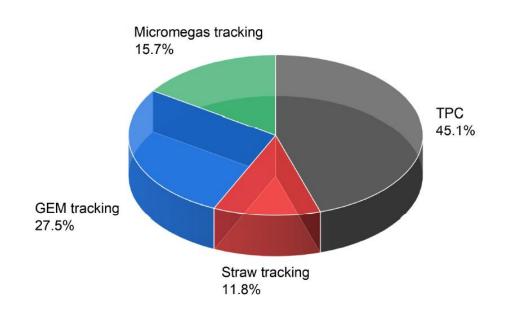
- Gas mixture: stability, drift velocity, ion mobility, ageing
- High spatial resolution
- Gain optimization: IBF, discharge stability
- R&D on detector sensors to suppress the IBF ratio
- New field cage structures (resistive foils, etc.)
- Optimise IBF together with energy resolution
- Very low material budget (few %)
- · Uniformity of the response of the sensors
- Radial TPCs (large curved amplifying structures, compact electronics and cooling, techniques for strip readout)
- Mechanics: thickness minimization but robust for precise electrical properties for stable drift velocity
- Influence of Magnetic field on IBF
- Others

Contributions by Country in FTE


Finland Israel Germany HEP India Italy 43.8% Japan Poland Portugal Switzerland Türkiye Nucl UK 56.3% US Spain Bulgaria

Contributions per Field of Applications

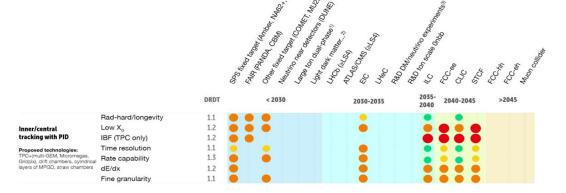
Inner and central tracking with particle identification capability: TPC


- High rate capability
- High time and spatial resolution
- Large area coverage with stable operation
- Low material budget
- Use with Eco-friendly gas mixtures

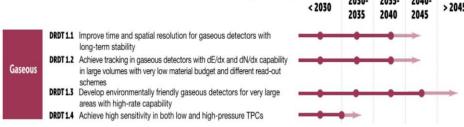
Contributions per Technology

- The TPC developments are predominant in Nuclear Physics and non-HEP applications
- Suppression of the ion backflow
- Precise spatial and time resolution
- · Low cost

Contributions per Applications



Possible synergies


- IBF reduction (together with other operational parameters optimisation)
 - · MPGD amplification technology
 - Multi-MPGD stacks and hybrids
 - Gating (eg. CEPC)
- Pad vs. Pixel TPC
 - InGrid developments
- Mechanical structure, static distortions
 - Minimise insensitive area
 - Laser systems
- Low-power FEE development
 - Low-power ASICs, continues vs pulsed operation
 - Cooling
- Active target TPCs (current focus on the MPGD readout, many challenges to add
 - High pile-up, space charge (fluctuations)
 - Final resolution of the reaction characteristic
 - · High dynamic range

TPC

- R&D on detector sensors to suppress the IBF ratio
- · Optimize IBF together with energy resolution
- Gain optimization: IBF, discharge stability
- Uniformity of the response of the sensors
- Gas mixture: stability, drift velocity, ion mobility, aging
- Influence of Magnetic field on IBF
- High spatial resolution
- Very low material budget (few %)
- Mechanics: thickness minimization but robust for precise electrical properties for stable drift velocity
- Integration: cooling of electronics

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

