PHOTODETECTORS

DRD1 survey analysis

P. Gasik (GSI/FAIR)

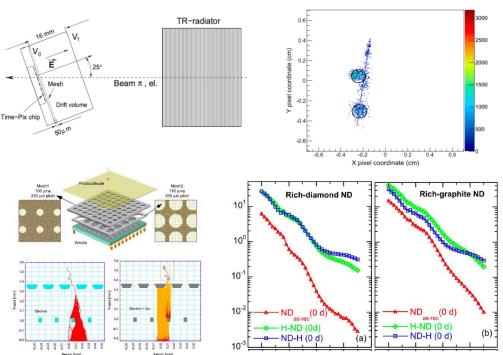
Challenges

- FUSED SILICA WINDOW

 PROTECTION WIRES

 DRIFT WIRES

 CSI

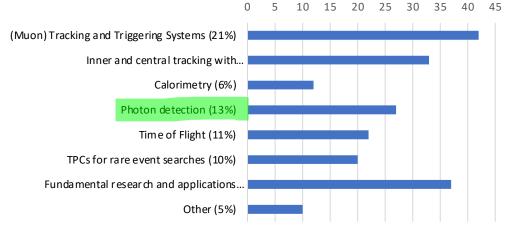

 THGEM I

 THGEM 2

 MESH

 ANODE WITH PAD
- Reduce the photon feedback generated in the multiplication process which leads to spurious signals;
- Reduce the IBF rate because the ion bombardment destroys the proportional chamber and limits the lifetime of the detector (R&D line in common with TPC needs, DRDT 1.2)
- Improve the detector performance in terms of spatial and time resolution, along with fast response in order to open the way to high-rate capabilities and precision measurements (DRDT 1.1).

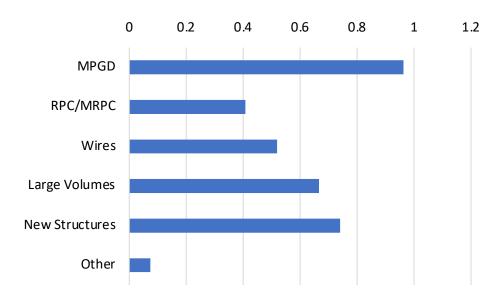
Facility	Technologies	Challenges	Most challenging requirements at experiment
Hadron and nuclear physics (EIC, AMBER, PANDA and CMB@FAIR)	Gaseous-RICH with MPGD-based photon detector TRD with GEM or GridPix	 RICH: Compact, single photon detection, high gain, fine spatial and time resolution, eco-friendly gas radiator, high pressure; limited IBF, novel photoconverters TRD: cluster counting technique, heavy gas for X-ray absorption, TRD photon -dE/dx separation. 	(EIC-gaseous RICH) 1 meter of radiator gas High-gain: $10^5 - 10^6$ Spatial resolution: O(1mm pitch) Time resolution (even with small signals) $\lesssim 1n$ Tolerance to magnetic field (1.5 - 3 T) Rad-hardness up to 10^{11} neq/cm ² option: High Pressure-Rich: Ar @ 3.5 bar (EIC-TRD) compactness 10^{-2} rejection in 20-30 cm improved MIP/x-ray identification
Higgs-EW-Top Factories (ee) (FCC-ee/CepC)	Gaseous-RICH with MPGD-based photon detector	- RICH: Compact, single photon detection, high gain, fine spatial and time resolution, eco-friendly gas radiator, high pressure, limited IBF, novel photoconverters	(Gaseous-RICH): High-gain: 10 ⁵ - 10 ⁶ Spatial resolution O(1mm pitch) Time resolution (even with small signals) ≲ 1ns

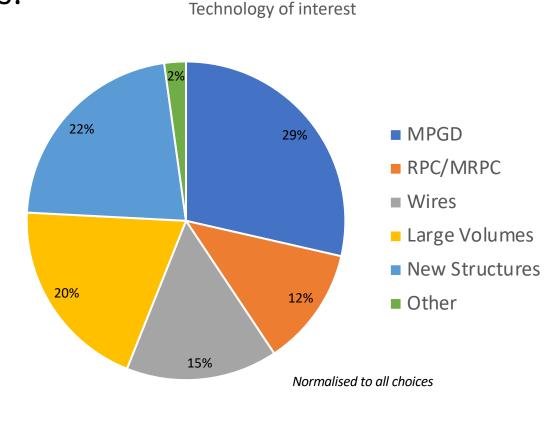

Survey for photodetectors

- 40 % of institutes interested in this application
- 3 % (2 institutes) are interested solely in photon detection

(inc. beyond HEP applications)

Select application areas connected to the research activity of your group

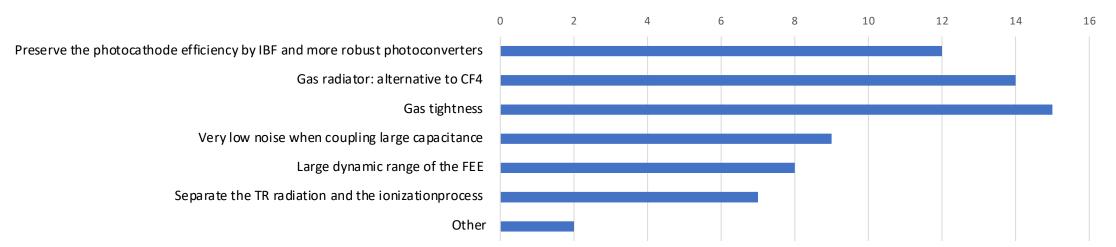

Normalised to all choices


- Photodetectors chosen without any specific topic: 5
- Photo-topic chosen without photo technology of interest: 1

Technologies of interest at the photo-institutes

• Technology specific for photo detectors:

MPGDs based (from comments)


Normalised to no. institutes

Specific topics

Please provide specific research activities of interest for your group:

- Preserve the photocathode efficiency by IBF and more robust photoconverters
- Gas radiator: alternative to CF4
- Gas tightness
- Very low noise when coupling large capacitance
- Large dynamic range of the FEE
- Separate the TR radiation and the ionization process
- Other

Specific topics

Photon detection

All topics covered, to some extend...

The case where the primary scintillation in the detector needs to be detected is perhaps not very fitting here but I found no better place. I chose the bullets that relate to that, where the word 'radiator' would need to be changed to 'scintillator'.

X-ray detection!

direct VUV detection. image intensifiers, VUV optics. applications of TPX4 cameras for TPC readout

presently mainly soft X-ray.

There is some interest in the topics marked above at GSI, although the investigations have not been pushed that way so far.

Specific comments

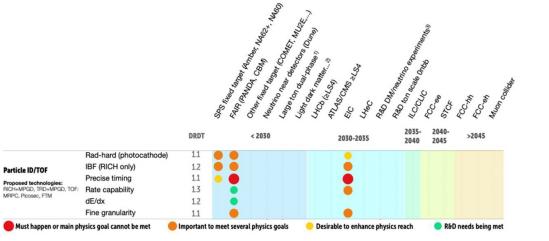
Topics of interest or under study in the group, though not necessarily connected to the specific application.

ECFA Roadmap challenges

- Photocathodes
 - Expression of interest (ageing, material studies)
 - IBF minimization, robust photoconverters, photocathode characterization
 - Photocathodes and solid converter studies clearly indicated by photodetector institutes in WG3 survey
- Gas radiator no specific comments
- Gas tightness
 - Eol to participate in dev.
- FEE no specific comments to photodetectors
 - WG5 survey: clear indication to develop wide dynamic range FEE; some interest in low-noise FEE
- TRD
 - No specific mention of TRD at all apart from 7 interested sites

		DRDT		< 2030	2030-2035	2035- 2040	2040- 2045	>2045
	Rad-hard (photocathode)	1.1	•	•	•			
Particle ID/TOF	IBF (RICH only)	1.2	۲	•	•			
Proposed technologies:	Precise timing	1.1		•	•			
RICH+MPGD, TRD+MPGD, TOF:	Rate capability	1.3		•	i i i i i i i i i i i i i i i i i i i			
MRPC, Picosec, FTM	dE/dx	1.2		•	The second second			
	Fine granularity	1.1		•	•			
Must happen or main ph	ysics goal cannot be met 🛛 😑	Important	to me	et several physics goals	Desirable to enhance physics r	each	🔵 R&D	needs being

Photon detection
Preserve the photocathode
efficiency by IBF and more
robust photoconverters
· Gas radiator: alternative to
CF4
 Gas tightness
· Very low noise when coupling
large capacitance
· Large dynamic range of the
FEE
• Separate the TR radiation and
the ionization process
· In TRD use of cluster counting
technique and improve it by
means of a InGrid


Particular activities in the community, assets

Assets that can support the collaboration:

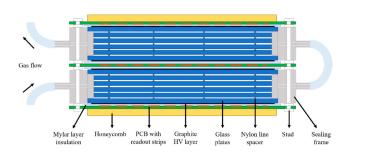
- A large variety of photodetector developments:
 - MPGD single-photon detectors (THGEM, MMG, CsI)
 - MPGD single-photon detectors for medical imaging (THGEM+MM)
 - Visible range photodetectors
 - MPGD RICH, HBD
- A large variety of material studies
 - Fast photodetectors with innovative photocathode substrates
 - Photoconverters compatible with operation in gas detectors (hydrogenated nanodiamonds)
- Optical readout experience
- Existing infrastructure
 - Photocathode characterization systems (QE, aging vs IBF)
 - Coating facilities
 - Photodetector development platforms

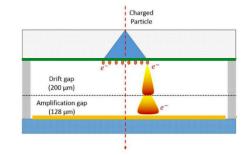
Assets that the collaboration can support (working groups):

- Detector production facilities
- Establish common production and test standards
- Characterisation and understanding of detector physics
- Simulation framework

Resources

- 6 (22%) institutes declared a plan to submit requests for a new strategic R&D budget
- 10 (37%) institutes declared they do not plan to submit requests for additional budget
- No comment specifying the application

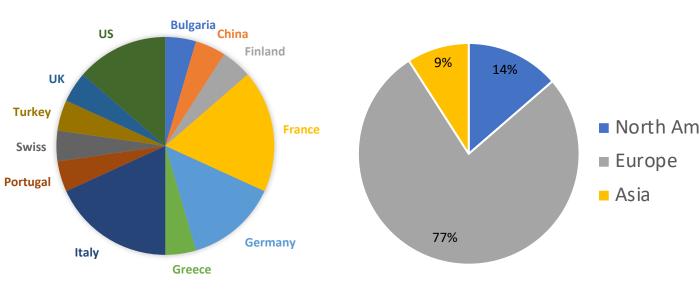

• Same for no. personnel (no discussion of who is working on the given application)


Time of Flight

DRD1 survey analysis

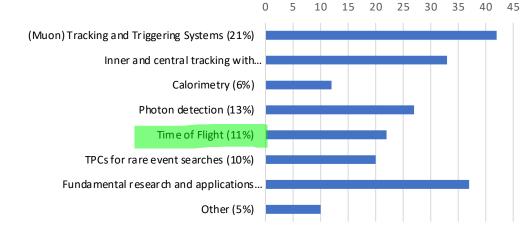
D. Gonzalez Diaz (USC) P. Gasik (GSI/FAIR)

TOF challenges



- Keep uniform response, in terms of high rate capability and time resolution (DRDT 1.1), over a large TOF detector area while operating with eco-friendly gases(DRDT 1.3).
- R&D has to continue towards an ultimate time resolution of 20 ps.
 - MRPCS: this can be achieved by reducing the thickness of the gas gaps O(100 um) and by increasing the number of gaps (O(10)) to maintain high efficiency. A rate capability up to 100 kHz/cm², necessary for systems in high radiation environments, could be achieved by thinner (better signal induction), and low resistive electrodes (order of 10⁷ Ωm).
 - **PICOSEC**, FTM: requires, in particular, identifying less expensive materials (radiators for PICOSEC) and very precise mechanical stability and uniformity. Synergetic to photodetectors: development of robust photocathodes by exploration of novel materials and photoconverter protection, stable operation, IBF optimization
- In addition, time resolution below 15-20 ps is comparable to the avalanche jitter level, requiring novel very lownoise front-end electronics. The development of dedicated low-noise electronics coping with high input capacitance and large dynamic range requirements is thus essential

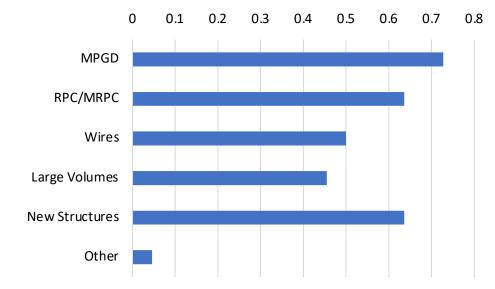
Facility Technologies		Challenges	Most challenging requirements at experiment				
(CMB(a)FAIR SOLID(a)II.AB		Rate capability, radiation hardness,	(CMB) Max Rate = 30 kHz/cm ² Full system time resolution < 80 ps Occupancy < 5% Full system area = 120 m ² ~100.000 channels, low power electronics				

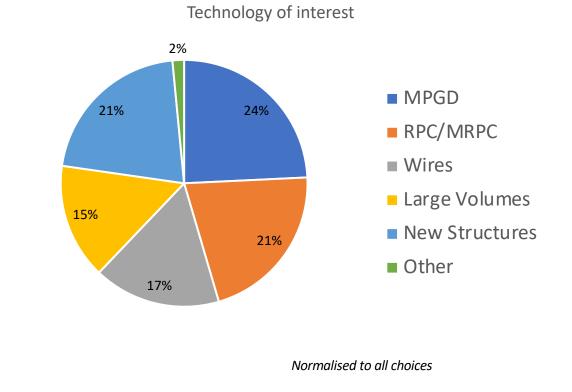

Survey

- 32% of institutes marked TOF as an application of interest
- Usually together with (muon) tracking and triggering systems

- Photodetectors chosen without any specific topic: 1
- Photo-topic chosen wothout photo technology of interest: 3

Select application areas connected to the research activity of your group

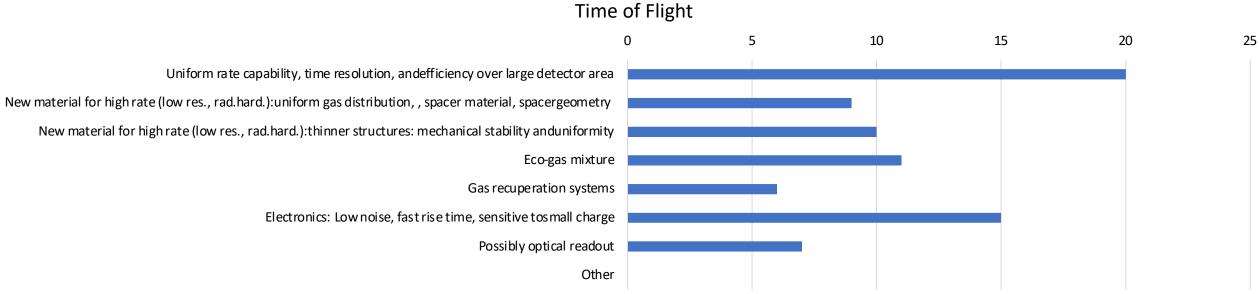



Normalised to all choices

Technologies of interest at the TOF-institutes

• Technology specific for TOF detectors:

PICOSEC, MRPC (from comments)


Normalised to no. institutes

Specific topics

Please provide specific research activities of interest for your group:

- Uniform rate capability, time resolution, and efficiency over large detector area
- New material for high rate (low res., rad.hard.): uniform gas distribution, spacer material, spacer geometry
- New material for high rate (low res., rad.hard.): thinner structures: mechanical stability and uniformity
- Eco-gas mixture
- Gas recuperation systems
- Electronics: Low noise, fast rise time, sensitive to small charge
- Possibly optical readout
- Other

Specific topics

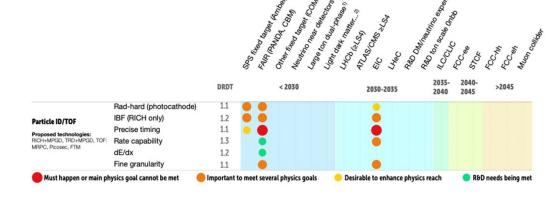
All topics covered, to some extend...

Comments/Notes	Answered: 2	
For timing our interest is in the R&D aiming for the best results with mpgd with single stage amplification order of O(ns)	, but always in the	
Topics of interest or under study in the group, though not necessarily connected to the specific application	a	

Specific comments

ECFA Roadmap challenges

Rate capability, timing challenge


- 1-2 references to CBM, No obvious reference to SPS or EIC.
- Many references to ns-level technology (RPC, MPGD, wires, straws)
- Several references to MRPC, and clear interest, but very few groups seem to be strong players below the 100 ps landmark (probably just 3!)
- Several references to picosec, one reference to gas + pixel readout.

Gas and material studies:

- Cross-analysis with WG3 show TOF institutes are particularly interested in gas ageing and radiation hardness studies
- new gas mixtures are under test in order to find low-GWP solutions for saturated-avalanche operational mode;
- Interest in resistive materials as well as photocathodes and solid converters (PICOSEC)
- gas recuperation systems → 6 positive answers, no particular comments. Need to investigate institute-wide for developing standards (WG3!)

FEE

• Clear correlation with precision timing and high rate capabilities (WG5 survey)

TOF · Uniform rate capability and time resolution over large detector area • New material for high rate (low resistivity, radiation hardness) - uniform gas distribution - thinner structures: mechanical stability and uniformity Eco-gas mixture · Electronics: Low noise, fast rise time, sensitive to small charge · Possibly optical readout · Precise clock distribution and synchronization over large area

Assets

- Assets that can support the collaboration:
 - Familiarity with fast timing systems techniques (know-how):
 - How to handle cross-talk, impedance matching, noise, PSA...
 - Learning from (and using) existing electronics.
 - New resistive layers investigated with material science divisions

• Assets that the collaboration can support (working groups):

- WG1: ToF developments largely overlaps with muon triggering (WG1 RPC, MRPC technology)
- WG3: Studies of eco-friendly gases. Recuperation systems \rightarrow set standards; might help enormously many groups that struggle with costs
- WG4: Simulation of Space-Charge
- WG5: improvement of electronics characteristics (S/N, BW), common electronics seems possible, but requires discussions.
- WG6: MRPC workshops

Resources

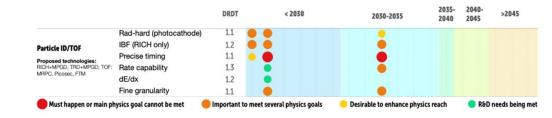
- 9 (41%) institutes declared a plan to submit requests for a new strategic R&D budget
- 6 (27 %) institutes declared they do not plan to submit requests for additional budget
- No comment specifying the application

• Same for no. personnel (no discussion of who is working on the given application)

Possible synergies?

(personal view)

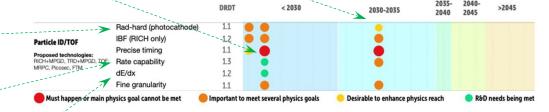
Possible synergies, WPs

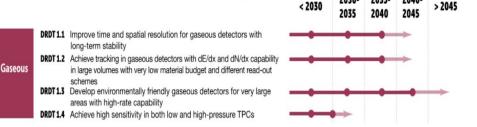

Large-area MPGD-based timing detectors

• Ultra high-rate MRPC development

- rate capability up to 100 -150 kHz/cm², time resolution down to 50 ps
- use of MRPC technology in single cell/channel layout; very thin (< 0.5 mm) and low resistivity (≤ 10¹⁰ Ωcm) material (glass, ceramics)
- Use case: usage in high rate high multiplicity environment for start time by measuring reaction products and event plane determination

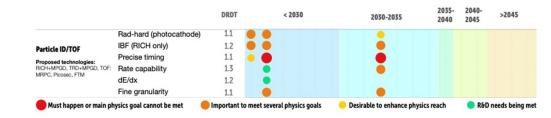
• Medical applications (beyond HEP)


- Single photon MPGD-based detector for medical imaging
- Developments of detectors for PET or CT Imaging applications.
- WPs related to the development of photocathodes
 - Cherenkov-based timing detectors, Visible light detectors
 - IBF suppression, discharge protection
- WPs related to the development of resistive materials
 - Probably essential for most TOF detectors in the long run (high field/gain operation need)
 - Low resistivity glass for timing MRPCs
 - DLC-based RPCs
- TRD: differentiate response to X-ray and ionization; TRD with dN/dx?

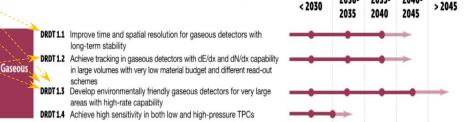

Gaseous DRDT1.1 Improve time and spatial resolution for gaseous detectors with long-term stability. DRDT1.2 Achieve tracking in gaseous detectors with dE/dx and dN/dx capability in large volumes with very low material budget and different read-out schemes. DRDT1.1 Develope mixinonmentally friendly gaseous detectors for very large areas with high-rate capability. DRDT1.4 Achieve high sensitivity in both low and high-pressure TPCs

Possible synergies, WPs

- Large-area MPGD-based timing detectors
- Ultra high-rate MRPC development
 - rate capability up to 100 -150 kHz/cm², time resolution down to 50 ps
 - use of MRPC technology in single cell/channel layout; very thin (< 0.5 mm) and low resistivity ($\leq 10^{10} \Omega$ cm) material (glass, ceramics)
 - Use case: usage in high rate high multiplicity environment for start time by measuring reaction products and event plane determination
- Medical applications (beyond HEP)
 - Single photon MPGD-based detector for medical imaging
 - Developments of detectors for PET or CT Imaging applications.
- WPs related to the development of photocathodes
 - Cherenkov-based timing detectors, Visible light detectors
 - IBF suppression, discharge protection
- WPs related to the development of resistive materials
 - Probably essential for most TOF detectors in the long run (high field/gain operation need)
 - Low resistivity glass for timing MRPCs
 - DLC-based RPCs
- TRD: differentiate response to X-ray and ionization; TRD with dN/dx?



DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)



Possible synergies, WPs

- Large-area MPGD-based timing detectors
- Ultra high-rate MRPC development
 - rate capability up to 100 -150 kHz/cm², time resolution down to 50 ps
 - use of MRPC technology in single cell/channel layout; very thin (< 0.5 mm) and low resistivity ($\leq 10^{10} \Omega$ cm) material (glass, ceramics)
 - Use case: usage in high rate high multiplicity environment for start time by measuring reaction products and event plane determination
- Medical applications (beyond HEP)
 - Single photon MPGD-based detector for medical imaging
 - Developments of detectors for PET or CT Imaging applications.
- WPs related to the development of photocathodes
 - Cherenkov-based timing detectors, Visible light detectors
 - IBF suppression, discharge protection
- WPs related to the development of resistive materials
 - Probably essential for most TOF detectors in the long run (high field/gain operation need)
 - Low resistivity glass for timing MRPCs
 - DLC-based RPCs
- TRD: differentiate response to X-ray and ionization; TRD with dN/dx?

DETECTOR RESEARCH AND DEVELOPMENT THEMES (DRDTs) & DETECTOR COMMUNITY THEMES (DCTs)

BACKUP

DRD1 WG2 - Applications

Conveners:

F. Garcia, P. Gasik, F. Grancagnolo, D. Gonzalez Diaz, G. Aielli, G. Pugliese,

and A. Colaleo, M. Titov for the ECFA part

17.02.2022

ECFA matrix

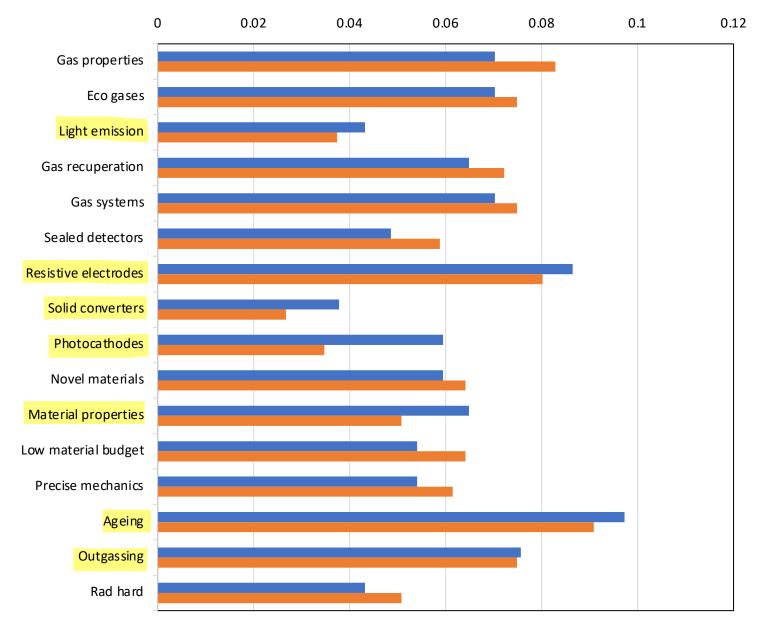
		DRDT			< 203	0		2030	-2035	203	-	2040- 2045	>2	2045	
	Rad-hard/longevity	1.1						•						•	•
Muon system	Time resolution	1.1						-				5	-	•	•
Proposed technologies:	Fine granularity	1.1	•					•	•					•	ŏ
RPC, Multi-GEM, resistive GEM,	Gas properties (eco-gas)	1.3							2010		1		ŏ	•	ŏ
Micromegas, micropixel Micromegas, µRwell, µPIC	Spatial resolution	1.1						•	•				ŏ	ŏ	ŏ
	Rate capability	1.3					ē				R		ŏ	•	
	Rad-hard/longevity	1.1	•		•				2						
Inner/central	Low X _o	1.2	ŏ												
tracking with PID	IBF (TPC only)	1.2	ē							ē		i i			
Proposed technologies:	Time resolution	1.1													
TPC+(multi-GEM, Micromegas, Gridpix), drift chambers, cylindrical	Rate capability	1.3						ĕ			2				
layers of MPGD, straw chambers	dE/dx	1.2	õ					ĕ							
	Fine granularity	1.1	ē		•			ĕ		ē					
	Rad-hard/longevity	1.1													
Preshower/	Low power	1.1											-	-	
Calorimeters	Gas properties (eco-gas)	1.3													
Proposed technologies:	Fast timing	1.1								-		5		•	ŏ
RPC, MRPC, Micromegas and GEM, µRwell, InGrid (integrated	Fine granularity	1.1											•	•	•
Micromegas grid with pixel readout), Pico-sec, FTM	Rate capability	1.3								ē				Ö	õ
	Large array/integration	1.3											Ŏ	ŏ	•
	Rad-hard (photocathode)	1.1	•					•					-	-	-
Particle ID/TOF	IBF (RICH only)	1.2	Ö					•							
Proposed technologies:	Precise timing	1.1													
RICH+MPGD, TRD+MPGD, TOF:	Rate capability	1.3		ē				ĕ							
MRPC, Picosec, FTM	dE/dx	1.2													
	Fine granularity	1.1						•							
	Low power	1.4							•						
	Fine granularity	1.4							ĕ	•					
TPC for rare decays	Large array/volume	1.4			•				•	•					
Proposed technologies:	Higher energy resolution	1.4			•				ĕ	Ŏ					
TPC+MPGD operation (from very low to very high pressure)	Lower energy threshold	1.4							- ē	•					
	Optical readout	1.4								ē					
	Gas pressure stability	1.4								•					
	Radiopurity	1.4								ĕ					

Must happen or main physics goal cannot be met

Important to meet several physics goals

R&D needs being met

Large ton dual-phase (PandaX-4T, LZ, DarkSide -20k, Argo 200k, ARIADNE ...)
 Light dark matter, solar axion, Onbb, rare nuclei&ions and astroparticle reactions, Ba tagging)
 R&D for 100-ton scale dual-phase DM/neutrino experiments

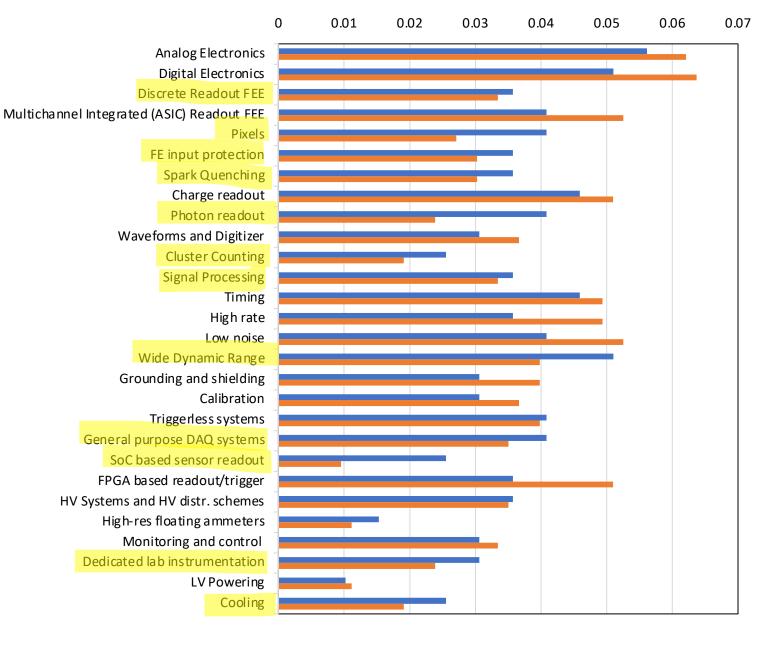

ECFA roadmap table 1.8

Muon System	Inner and Central tracking	Calorimetry	Photon detection	TOF	Rare decays
 Radiation hardness and 	Drift chambers	• Uniformity of the response of	Preserve the photocathode	 Uniform rate capability and 	 Radio-purity of the materials
stability of large area up to	 High rate, unique volume, high granularity, low 	the large area and dynamic	efficiency by IBF and more	time resolution over large	 Low background
integrated charges of hundreds	mass	energy range	robust photoconverters	detector area	 High granularity
of C/cm2:	 Hydrocarbon-free mixture for long-term and 	 Optimization of weights for 	 Gas radiator: alternative to 	 New material for high rate 	 For large volume detectors:
 aging issues and discharges; 	high-rate operation	different thresholds in digital	CF4	(low resistivity, radiation	transparency over large distance
 Operation in a stable and 	• Prove the cluster counting principle with the related	calorimeters	 Gas tightness 	hardness)	 Pressure stability and control
efficient manner with incident	electronics	 Rate capability in detectors 	 Very low noise when coupling 	- uniform gas distribution	· Electronics with large
particle flows up to ~10	 Mechanics: new wiring procedure, new wire 	based on resistive materials:	large capacitance	- thinner structures:	dynamic range and flexible
MHz/cm2:	materials	resistivity uniformity, discharge	 Large dynamic range of the 	mechanical stability and	configuration.
- miniaturisation of readout	 Integration: accessibility for repairing 	issue at high rate and in large	FEE	uniformity	 Self-trigger capability
elements needed to keep		area detector	• Separate the TR radiation and	 Eco-gas mixture 	 Low noise electronics
occupancy low	TPC	 R&D on sub-ns in active 	the ionization process	 Electronics: Low noise, fast 	 Fast electronics
 Manufacturing, on an 	• R&D on detector sensors to suppress the IBF ratio	elements: resolution stables over	• In TRD use of cluster counting		 Optical readout
industrial scale, large detectors	 Optimize IBF together with energy resolution 	wide range of fluxes	technique and improve it by	charge	
at low cost, by means of a	 Gain optimization: IBF, discharge stability 	 Gas homogeneity and stable 	means of a InGrid	 Possibly optical readout 	
process of technological transfer	 Uniformity of the response of the sensors 	over time		· Precise clock distribution and	
to the industry and identifies	· Gas mixture: stability, drift velocity, ion mobility,	 Eco-friendly gas mixture for 		synchronization over large area	
processes transferable to	aging	RPC			
industries	 Influence of Magnetic field on IBF 	 Stability of the gas gain: fast 			
 Identification of eco-friendly 	 High spatial resolution 	monitoring of gas mixture and			
gas mixture and mitigation of	 Very low material budget (few %) 	environmental conditions			
the issue related to the operation	· Mechanics: thickness minimization but robust for	 Mechanics: 			
with high WGP gas mixture:	precise electrical properties for stable drift velocity	- large area needed to avoid			
 gas tightness;gas 	 Integration: cooling of electronics 	dead zone: limitation on size and			
recuperation system; accessibility		planarity of PCB is an issue			
for repairing	Straw chambers	- multi-gap with ultra-thin			
 Study of resistive materials 	 Ultra-long and thin film tubes 	modules: very thin layer of glass			
(RPC and MPGD):	 "Smart" designs: self-stabilized straw module, 	and HPL electrodes, gas gap			
- higher gain in a single	compensating relaxation	thickness uniformity few micron			
multiplication layer, with a	 Small diameter for faster timing, less occupancy, 				
remarkable advantage for	high rate capability				
assembly, mass production and	• Reduced drift time, hit leading times and trailing time				
cost	resolutions, with dedicated R&D on the electronics				
- new material and production	 PID by dE/dx with "standard" time readout and 				
techniques for resistive layers	time-over-threshold				
	• 4D-measurement: 3D-space and (offline) track time				
• Thinner layers and mechanical	· Over-pressurized tubes in vacuum: control the				
precision over large area	leakage rate to maintain the shape				

Photons vs gas relevant topics

+ 3 institutes are interested in solid converters
and photocathodes
But did not choose photo detectors as

application of interest (<1 %)



Photodetector interest

Photons vs FEE relevant topics

Research interest

TOF vs gas relevant topics

0.04

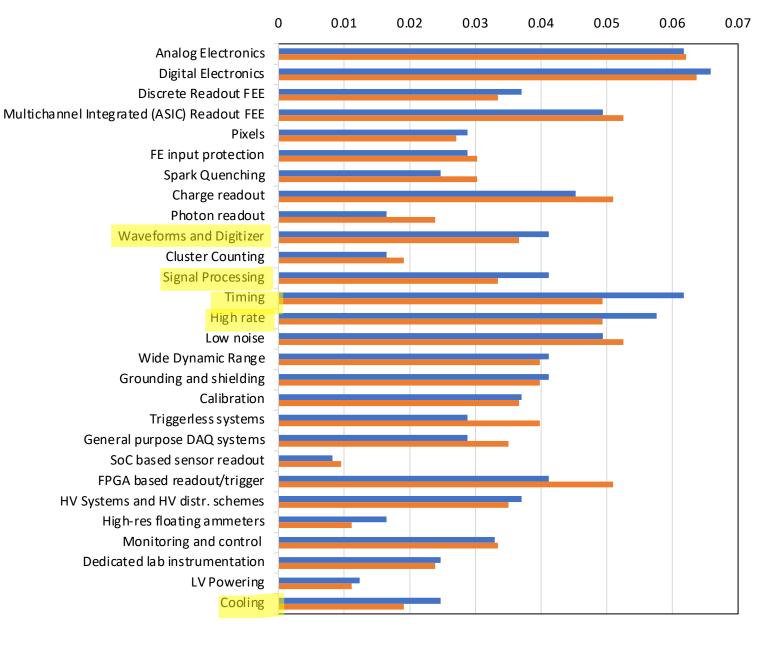
0.06

0.08

0.02

0

TOF interest



0.12

0.1

TOF vs FEE relevant topics

Research interest

TOF interest

