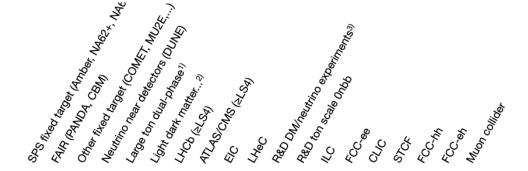

DRD1 Survey : Calorimetry and Other Applications beyond HEP

G. Pugliese

Department of Physics and INFN, Bari, Italy


Calorimetry with Gas Detectors

Hadronic calorimeters with alternating layers of absorbers and sampling elements, based on Gas Detectors, are considered for ILC, FCC-ee, EIC, FCC-hh and muon collider

Resistive Plate WELL (RPWELL)

In digital or semi-digital approach

		DRDT	< 2030	2030-2035	2035- 2040	2040-2045	>2045
	Rad-hard/longevity	1.1					
Preshower/ Calorimeters	Low power	1.1				•	i i i
	Gas properties (eco-gas)	1.3					
Proposed technologies: RPC, MRPC, Micromegas and GEM, µRwell, InGrid (integrated Micromegas grid with pixel readout), Pico-sec, FTM	Fast timing	1.1			ĕ	ĕĕ	ŏ ŏ i
	Fine granularity	1.1					
	Rate capability	1.3	/			• •	
	Large array/integration	1.3					ŎŎ

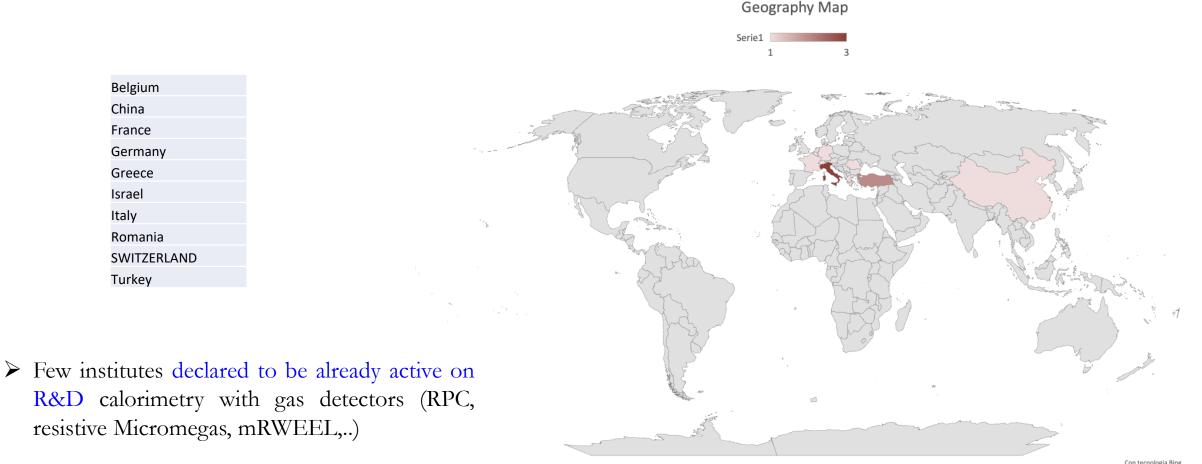
RPC

Calorimetry with GD: Technologies and main challenges from ECFA

Facility	Technologies	Challenges	Most challenging requirements at experiment	
(II C/ECC_ee/CepC /SCTE)	RPC, Micromegas and GEM, μ-RWELL, GridPix, PICOSEC, FTM	High granularity, excellent hit timing, large area detectors, stabiliy, uniform response, eco-gases	Granularity (~1 cm ²) Radiation hardness: no Jet Energy resolution: 3-4 %	Require thin gas layers, which might affect signal implification and timing resolution, and embedded
Muon collider	RPC, Micromegas and GEM, μ-RWELL, GridPix, PICOSEC, FTM	High granularity, radiation hardness, excellent hit timing, stabiliy, uniform response, eco-gases	Granularity (~1cm ²) Fat jet identification	electronics integrated in a very compact system.
(EIC)	RPC, Micromegas and GEM, μ-RWELL, GridPix, PICOSEC, FTM	High granularity, radiation hardness, excellent hit timing, stabiliy, uniform response, eco-gases	(EIC option) DHCAL	

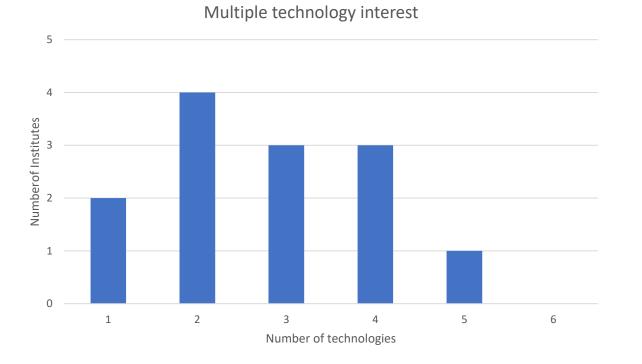
Figure 1.4: Main drivers for Calorimeters at future facilities. The most stringent requirements for the future R&D activities are quoted in the last column.

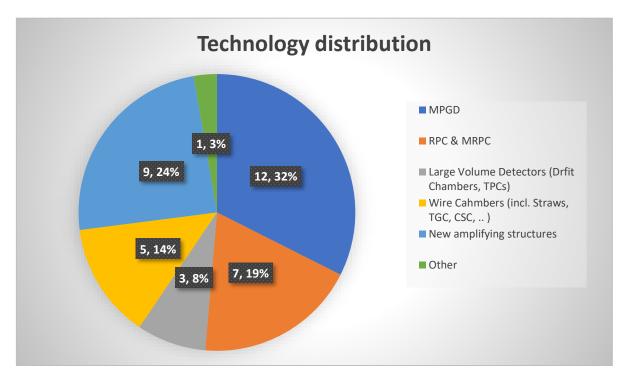
Main challenges of the future R&D in the GD-based calorimetry:


ensure a uniform response over the large detector area (DRDT 1.1)

Production of high planarity and large area of PCBs for MPGDs or of very thin High Pressure Laminate RPCs is a challenge (just an example)

- radiation hard gaseous detectors are needed in some cases
- operation with eco-friendly gas mixtures (DRDT 1.3)...


Survey: Calorimetry at Futures Facilities


13 out of 69 institutes expressed interest on Calorimetry application
 These institutes are mainly located in EU and China (1)

Survey: technology interest for Calorimetry applications

 All detector technologies are well represented
 Each institute is involved in more than one technology: typically MPGD plus one or two other technology

Calorimetry Number of institutes interested for each R&D • Uniformity of the response of the large area and dynamic energy range • Optimization of weights for different thresholds in digital calorimeters Institute distribution for R&D field Rate capability in detectors based on resistive materials: resistivity uniformity, discharge Mechanics: ultra-thin modules issue at high rate and in large area detector • R&D on sub-ns in active Mechanics: multi-gap elements: resolution stables over wide range of fluxes Mechanics: large area • Gas homogeneity and stable over time • Eco-friendly gas mixture for FE electronics: dynamic range and linearity RPC • Stability of the gas gain: fast Eco-friendly gas mixture monitoring of gas mixture and environmental conditions • Mechanics: Stability of the gas gain - large area needed to avoid dead zone: limitation on size and R&D on sub-ns in active elements planarity of PCB is an issue - multi-gap with ultra-thin modules: very thin layer of glass Rate Capability: Uniformity and discharge issue

Optimization/Reduction of hit multiplicity Optimization of weights for thresholds in digital Uniformity of the response

0

and HPL electrodes, gas gap thickness uniformity few micron List of R&D in

the SURVEY

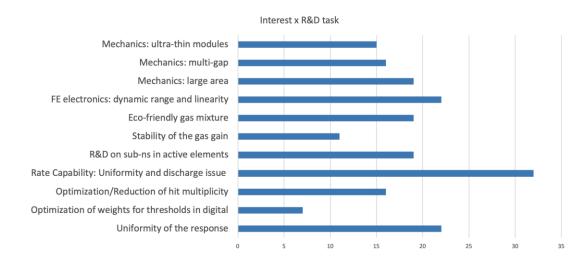
Each R&D task is well covered by a good number of institutes (here there is no distinguish by the technologies used)

2

6

8

10


12

4

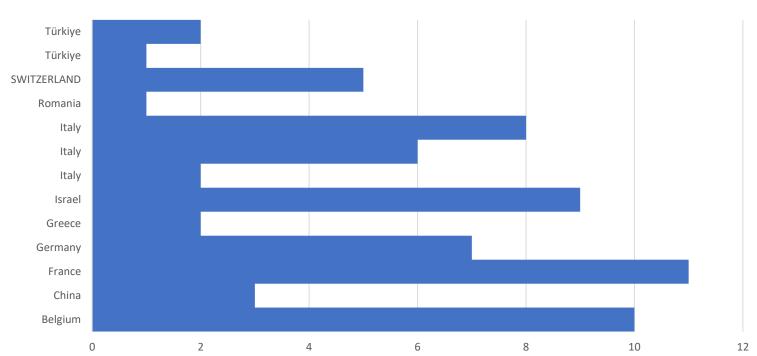
Technologies vs. R&D

												1
	Uniformity of the response	Optimization of weights for thresholds in digital	Optimization/R eduction of hit multiplicity	Rate Capability: Uniformity and discharge issue		Stability of the gas gain	Eco-friendly gas mixture	FE electronics: dynamic range and linearity	Mechanics: large area	Mechanics: multi- gap	Mechanics: ultra-thin modules	i
DRDT	1,1			1,3	1.1-1.3		1,3		1,1	1,1	1,1	
TOTALS	8	3	5	11	6	4	6	7	6	6	5	
MPGD	7	3	5	10	6	3	5	6	5	5	4	
RPC and MRPC	5	2	3	6	4	2	6	5	5	4	4	
Large Volume Detectors (Drfit Chambers, TPCs)	2	0	2	3	2	1	1	2	2	1	1	(
Wire Cahmbers (incl. Straws, TGC, CSC,)	2	0	2	4	3	2	3	3	2	2	2	
New amplifying structures	6	2	4	9	4	3	4	6	5	4	4	
number of declared tech. x R&D	16	5	12	23	15	8	15	16	14	12	11	

For each R&D task, there are at least two or more technologies: synergies are possible cross institutes and cross technology

Calorimetry

Uniformity of the response of the large area and dynamic energy range
Optimization of weights for different thresholds in digital

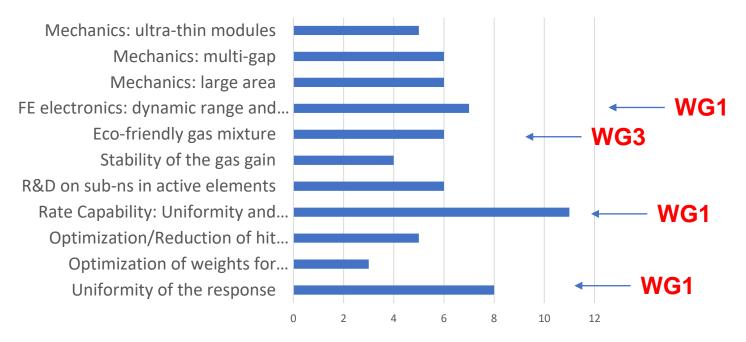

calorimeters

• Rate capability in detectors based on resistive materials: resistivity uniformity, discharge issue at high rate and in large area detector

- R&D on sub-ns in active elements: resolution stables over wide range of fluxes
- Gas homogeneity and stable over time
- Eco-friendly gas mixture for RPC
- Stability of the gas gain: fast monitoring of gas mixture and environmental conditions
- Mechanics:

large area needed to avoid dead zone: limitation on size and planarity of PCB is an issue
multi-gap with ultra-thin modules: very thin layer of glass and HPL electrodes, gas gap thickness uniformity few micron

Number of R&D task selected by each institute

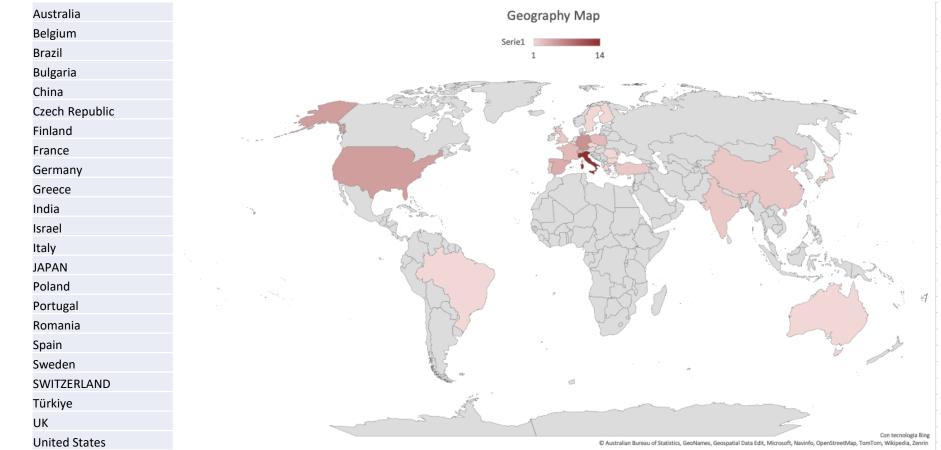


Number of R&Ds selected

- Some institutes are interested in most the R&Ds →These multiple R&Ds activities could facilitate synergies among the institutes
- Some institutes are interested on few specific R&Ds
- Institutes with already some experience on this field could share ideas/experience with institutes new on this field

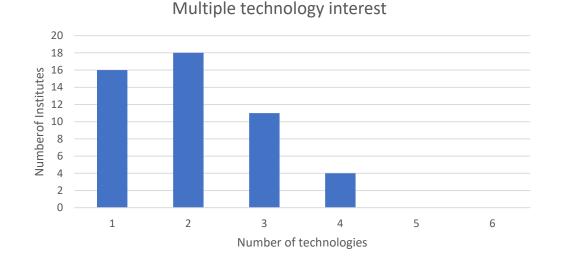
And....Synergies with other WGs

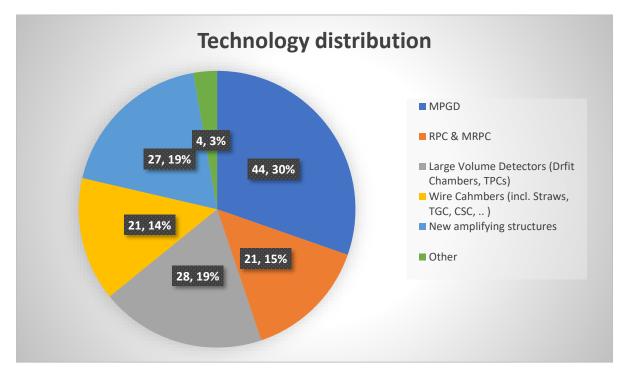
Institute distribution for R&D field

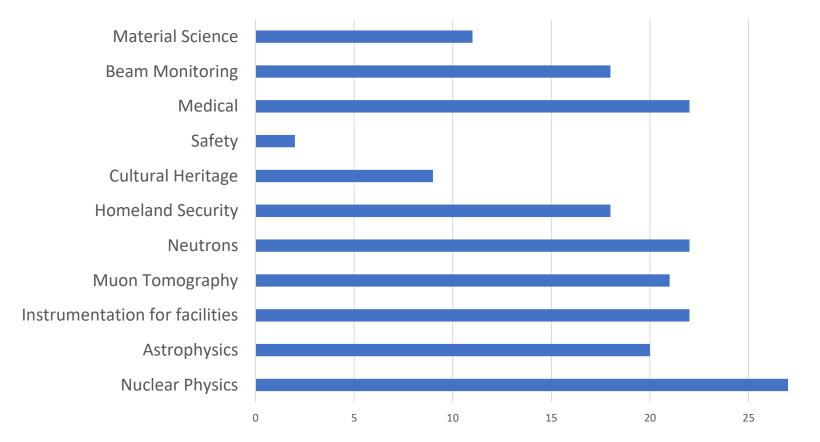


... And of course with DRD6

Fundamental Research and Applications beyond HEP...

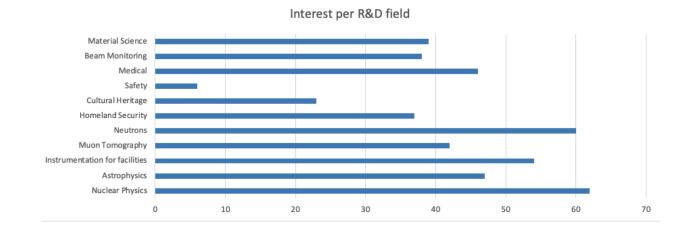

Fundamental Research and Applications beyond HEP


- > 49 out of 69 institutes (70%) expressed interest FR and Applications beyond HEP
- > Great interest, spread all over the world. Biggest cluster in Italy (14), Germany (6) and US (5)
- In most of the cases (but 4), the institutes are interest in applications beyond HEP plus other applications (Muon, etc)


Survey: which technologies for FR and Other applications Beyond HEP

- All detector technologies are well represented. Wide interest for these "other applications"
- > Each institute is involved in more than one technology

Fundamental Research and Applications beyond HEP


Institute distribution for R&D field

30

Technologies vs. R&D

	Nuclear Physics	Astrophysics	Instrumentation	Muon Tomography	Neutrons	Homeland Security	Cultural Heritage	Safety	Medical	Beam Monitoring	Material Science
	1,1			1,3	1.1-1.3	1,3			1,1	1,1	1,1
TOTALS	27	20	22	21	22	18	9	2	22	18	11
MPGD	21	17	18	16	21	14	9	2	18	13	10
RPC & MRPC	11	8	8	11	7	9	5	1	10	7	6
Large Volume Detectors (Drfit Chambers, TPCs)	16	11	16	7	17	8	3	1	8	11	8
New amplifying structures	13	8	9	6	12	5	5	1	8	6	8
Others	1	3	3	2	3	1	1	1	2	1	7
	62	47	54	42	60	37	23	6	46	38	39

For each R&D task, there are at least two or more technologies: synergies are possible cross institutes and cross technologies

SPARE