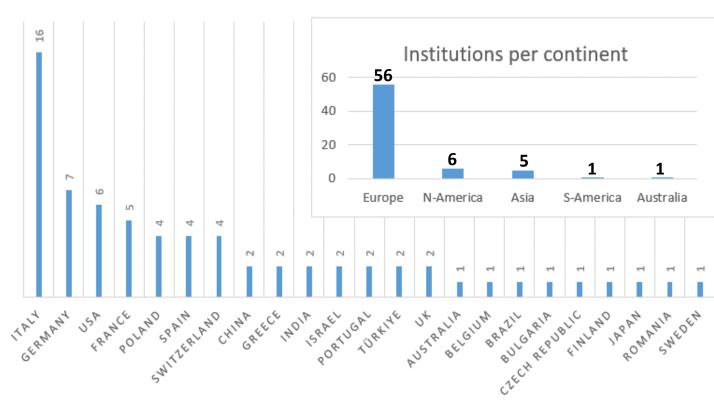
1–3 Mar 2023 CERN

Survey analysis WG1 Technologies

P. Colas, I. Deppner, L. Moleri, F. Resnati, M. Tytgat, P. Wintz


Paul.Colas@cea.fr	- TPC/MPGD - moderator
filippo.resnati@cern.ch	- MPGD
<u>p.wintz@fz-juelich.de</u>	- Wire
deppner@physi.uni-heidel	<u>berg.de</u> - RPC
<u>michael.tytgat@cern.ch</u>	- RPC/MPGD
mole.luca@gmail.com TG(2

Technology WG1

2 direct Questions regarding to technology to the participants of the survey

- Technologies of interest
- Comments/Notes (Please add any relevant comment/remark on technologies of interest)

69 institutions from 23 countries fill in the survey

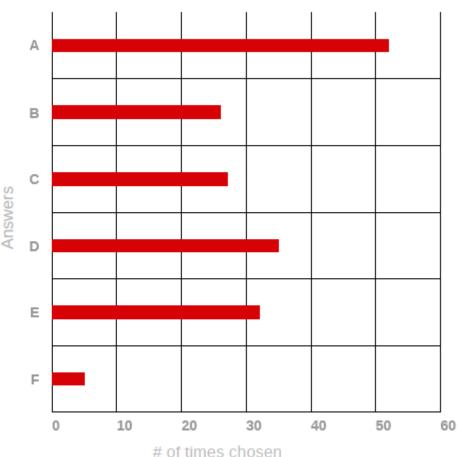
INSTITUTIONS PER COUNTRY

S-America: IFUSP: Instituto de Física da Universidade de São Paulo/Brazil

Australia: This survey response reflects the broad efforts towards MPGD research in Australia, not a single-institution contribution

Question: What can we do to attract more institutions from outside Europe?

Technologies of interest


177 times a technology was selected (in mean 2.5 technologies per institution)

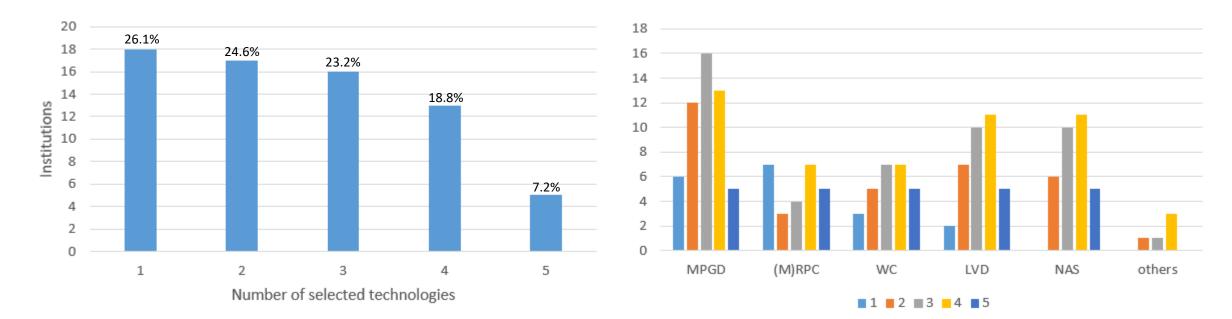
B. RPC and MRPC: 26 (37.7%) C. Wire chambers (incl. Straws, TGC, CSC, ..): 27 (39.1%) D. Large Volume Detectors (drift chambers, TPCs): 35 (50.7%)

E. New amplifying structures: 32 (46.4%)

F. Other: 5 (7.2%)

A. MPGD: 52 (75.4%)

Technologies of interest


	MPGD	RPC/MRPC	WC	LVD	NAS	other 1
Australia	1			1	1	2
Belgium	1	1			1	3
Brazil	1		1	1		5
Bulgaria		1				
China	1	1		2	1	
Czech Republic	1			1		
Finland	1			1		
France	5	2	2	4	3	1
Germany	5	3	3	3	4	
Greece	2		1		1	
India	2	2	2	1		
Israel	2	1	2	2	2	
Italy	11	5	3	6	6	2
Japan	1	1	1			
Poland	4	1	3	2	3	
Portugal	1	1	1	1		
Romania	1					1
Spain	2	2		3	2	1
Sweden	1					
Switzerland	2	2	4	3	1	
Türkiye	2	1	1		1	
UK	1		1	1	1	
USA	6	1	2	3	5	

MPGD: Micro pattern gaseous detectors
RPC/MRPC: RPC and MRPC
WC: Wire chambers (incl. Straws, TGC, CSC, ...)
LVD: Large Volume Detectors (drift chambers, TPCs)
NAS: New amplifying structures
Others:

Others (5)

- Hybrid detectors (eg gas amplification and silicon pixels) for light and charged particles detection with fast timing
- Neutron spectrometry with Bonner spheres
- Innovative gas mixtures for electroluminescence and negative ion drift (WG3)
- Data acquisition system, front-end electronics, ASIC design, Monte Carlo simulation tools, tracking algorithms (WG5)

Technologies of interest - some statistics

Institution which selected all 5 technologies

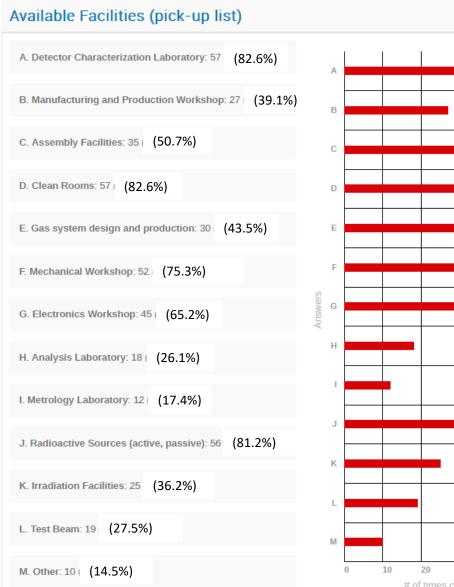

- Institute of Plasma Physics and Laser Microfusion (Poland) 87 FTEs
- CERN (Switzerland) 18 FTEs
- GSI (Germany) 6 FTEs
- IJCLab/IN2P3/CNRS (France) no info on FTEs
- Hebrew University of Jerusalem (Israel) no info on FTEs

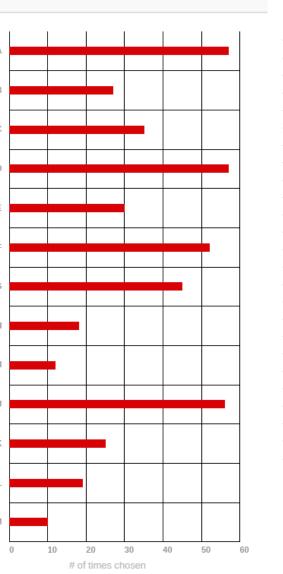
Available Personnel

Personnel distribution to

56 institutions gave information on personnel (only those institution were considered in this analysis)

512 FTEs in total


Assumption: Personnel equally distributed among technologies within an institution

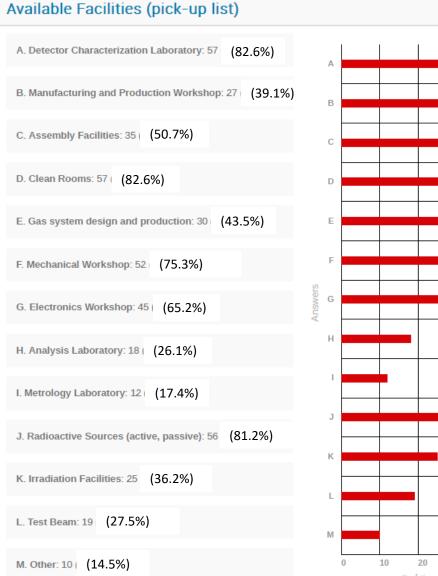

Observation:

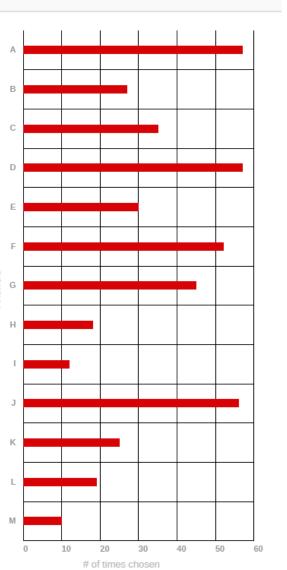
FTEs homogenously distributed over all technology. However, observation could be biased by assumption

Available Facilities

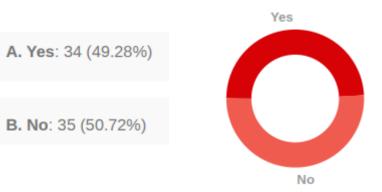
Answered: 69

443 times a available facility was selected (in mean 6.4 potential available facilities per institution)


	DCL	M&PV	AF	CR	GS-DP	MW	EW	AL	ML	RAS	IF	ТВ	Other	
Australia	1			1	1	1	1			1	1	1	1	
Belgium	1		1	1		1				1				
Brazil	1			1		1	1	1		1	1	1		
Bulgaria	1												1	
China	2	2	2	2	1		1	2		2	1			
Czech Republic										1	1		1	
Finland	1	. 1	1	1		1				1				
France	5	4	4	4	2	4	4	1	1	5		2	1	
Germany	5	4	5	5	4	6	6		1	7	3	4	1	
Greece	1			1	1	1	1			1	2	2		
India	2		1	2		1				2				
Israel	2	2	1	2	2	2	1	2		2	1			
Italy	16	5	8	15	8	15	15	3	5	13	6	3	2	
Japan	1			1						1	1			
Poland	4	-	1	4		3	2	2		3				
Portugal	2	1	1	2	1	2	1			2	1			
Romania		1		1		1	1			1	1			
Spain	2		1	2	1	1			1	2	1		2	
Sweden														
Switzerland	2	2	2	3	2	3	3	2	2	3	3	3		
Türkiye	2	1	1	1	1	2	1	1	1	2	1			
UK	1	. 1	2	2	1	1	2	2	1	1		1	1	
USA	5	3	5	6	5	6	5	1		4	1	2		


N-America
S-AmericaQuestion: How much of the available resources can
be used by the DRD1 collaboration?Asia
Australia
EuropeQuestion: Is more Manufacturing and large scale
Production Workshop infrastructure needed?

7


Available Facilities

Answered: 69

Do you have production capabilities at your institute?

If yes , please list them in the facility section at the beginning of the survey and specify **if they are accessible to external users**

See more details from WG6

Available Facilities

Other Available Facilities

- Precise wire-winding ($10\mu m$ precision, also on lage area O(2m)), Lithography and metallic coating (approx. 50x50cm) by evaporation
- Underground laboratory (Stawell Underground Physics Laboratory), trace element analysis
- Femto-second laser with variable wavelength (250 nm 2500 nm)
- Computing infrastructure (GRID center + High Performance Computing Cluster with GPUs).
- 4.3km of underground facilities fully dedicated to science and technology and surface facilities
- Cryogenics facility (cryostats)
- 2MeV Van de Graaff accelerator for protons, alphas and deuterons. We also use it to produce neutrons by hitting deuterium and tritium targets with protons and deuterons.
- Facilities for X-ray analysis, SEM and confocal microscopy, the SQUID, the facility for electrical characterization of materials at low temperature
- Optical instrumentation

60

Underground laboratory and associated services (radiopurity screening facilities, ...)

Test beam facilities:

CERN, GSI, Frascati, GANIL, Paul Scherrer Institut TJNAF, Jefferson Lab, Demokritos, IJCLab/IN2P3/CNRS, Australian National University, INFN Sezione di Padova IFU de São Paulo, University of Hawaii, NTU Athens PI, University of Bonn, Università & INFN Sezione di Pavia University of Manchester

Question: are all this test beam facilities available for external groups/institutions belonging to DRD1 and what are the conditions?

Applications of Technologies

	Α	: MTaTS	B: IaCT	C: Cal	D: PD	E: TOF	F: TPC	G: FRaAbHEP	H: Others		
A: MPGD		55,8%	51,9%	21,2%	48,1%	30,8%	34,6%	61,5%	17,3%		
B: (M)RPC		80,8%	50,0%	23,1%	42,3%	53,8%	15,4%	76,9%	11,5%		
C: WC		63,0%	74,1%	18,5%	48,1%	40,7%	14,8%	6 <u>63,0%</u> 22,			
D: LVD		45,7%	68,6%	11,4%	51,4%	28,6%	48,6%	60,0%	17,1%		
E: NAS		53,1%	59,4%	25,0%	59,4%	43,8%	40,6%	65,6%	15,6%		
F: Others		60,0%	40,0%	20,0%	40,0%	20,0%	60,0%	60,0%	40,0%		
		A: MPGD	B: (M)RPC	C: WC	D: LVD	E: NAS	F: Others	A. (Muon) Trackir (20.69%)	ng and Triggering Sy		
A: MTaTS		69,0%	50,0%	40,5%	38,1%	40,5%	7,1%				
B: IaCT		81,8%	39,4%	60,6%	72,7%	57,6%	6,1%	B. Inner and central tracking with particle			
C: Cal		91,7%	50,0%	41,7%	33,3%	66,7%	8,3%	identification cap (16.26%)	ability (drift, straw, T		
D: PD		92,6%	40,7%	48,1%	66,7%	70,4%	7,4%				
E: TOF		72,7%	63,6%	50,0%	45,5%	63,6%	4,5%	C. Calorimetry: 12	2 (5.91%)		
F: TPC		90,0%	20,0%	20,0%	85,0%	65,0%	15,0%				
G: FRaAbH	IEP	86,5%	54,1%	45,9%	56,8%	56,8%	8,1%	D. Photon detect	D. Photon detection: 27 (13.30%)		
H: Others		90,0%	30,0%	60,0%	60,0%	50,0%	20,0%				
								E. Time of Flight	: 22 (10.84%)		
A: MTaTS		racking and T									
B: IaCT		d central track	F. TPCs for rare e	vent searches: 20 (9							
C: Cal	Calorime										
D: PD	Photon d	letection						G. Fundamental r	esearch and applica		

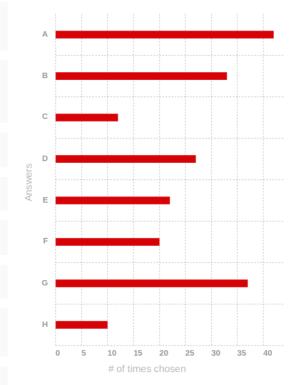
Fundamental research and applications beyond HEP (including industrial applications)

Time of Flight

Other

TPCs for rare event searches

E: TOF


F: TPC

G: FRaAbHEP

H: Others

Red color means higher correlation, blue less

See more details from WG2

н.	Other:	10 ((4.93%)
----	--------	------	---------

HEP (including industrial applications): 37 (18.23%)

Summary

- 69 institutions from 23 countries fill in the survey
- Thank you for your attention your > All different types of gaseous detectors are well covered by the current community
- **2** Questions regarding to technology to the participants of the survey
 - Technologies of interest
 - Comments/Notes (only 33,3% expressed comments)
- 177 times a technology was selected (in mean 2.5 technologies per institution)
- Technologies are homogenous distributed over Institutions/Countries and Continents
- > Since many institutes are working on multiple technologies it is not always clear from the survey which type is used for what application
- Concerning the facilities, more information is needed from the institutes to understand the details of their \geq infrastructure and the public access options

Backup

Technology of interest /Comments/Notes

General:

Gas Group (MPGD, RPC, Wire), -> CERN GridPix

MPGD:

Single photon detectors based on THGEM + MM technologies for medical imaging purposes ML-ThGEM. MPGD-based wide area detectors Resistive Micromegas; Implementation of resistive Micromegas and uRWell on hadron sampling calorimetry; MPGDs for operation in liquid xenon and argon Fast Timing MPGD Triple-GEMs and Resistive MPGDs for high-rate operation Glass GEMs

RPC and MRPC:

There are on-going R&D for high rate RPCs for tracking purposes Muography telescope is under construction.

Wire Chambers: (MWPCs and STRAW tubes) for developing detectors can be used for tracking ToF Straw tube, MDT"

Large Volume Detectors:

High pressure TPC

Others:

Hybrid detectors (eg gas amplification and silicon pixels) for light and charged particles detection with fast timing Neutron spectrometry with Bonner spheres

Technologies of interest - some statistics

Table shows the percentage of institutions which selected a different technology in addition

	A: MPGD	B: (M)RPC	C: WC	D: LVD	E: NAS	F: Other
A: MPGD		30,8%	36,5%	59,6%	57,7%	9,6%
B: (M)RPC	61,5%		50,0%	34,6%	46,2%	0,0%
C: WC	70,4%	48,1%		51,9%	44,4%	0,0%
D: LVD	88,6%	25,7%	40,0%		62,9%	11,4%
E: NAS	93,8%	37,5%	37,5%	68,8%		9,4%
F: Other	100,0%	0,0%	0,0%	80,0%	60,0%	