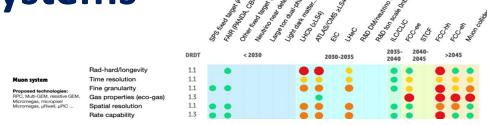
DRD1 proposal drafting

WG2 Conveners:

- F. Garcia, P. Gasik, F. Grancagnolo, D. Gonzalez Diaz, G. Aielli, G. Pugliese;
- A. Colaleo, M. Titov for the ECFA part

WG2 chapter content


• Summary of challenges

(ECFA compatible but filtered with survey results \rightarrow define priorities)

- **DRD1 Task proposals** (compatible with ECFA but filtered with survey results)
- ... more?

1. (Muon) tracking and triggering systems

Challenges/tasks for the future muon systems

- extend state-of-the-art rate capability and longevity by minimum one order of magnitude or more in the highest eta region (up to an order of MHz/cm²)
- enable detectors reliably and efficiently working with suitable low GWP mixtures
- reaching the two objectives above can be favored in 3 ways:
 - low noise electronics integrated in a highly stable and noise immune Faraday cage
 - new detector geometries increasing the signal collection yield
 - use of innovative resistive material for suppressing discharges on the electrodes.
- Time resolution O(20ps) for timing applications and of 200-300 ps to identify the BC in a very high rate collider, to help in cutting the pile up and to boost the ability to measure particle velocity
- large series industrializes production

2. Inner trackers (drift/straw chambers)

Drift Chambers: challenges/tasks

2.1 Mechanics: new wiring procedures, new wire materials

High gas gains ~5×10⁵, required for the application of the cluster counting techniques, high granularities (small cell size, order of 1 cm), long wires (order of 4-5 m) and electrostatic stability demand studies on new light materials with high YTS for wires.

2.2 Electronics: on-line, real time data processing algorithms

Waveform digitizers, signal processing for cluster counting exploiting new data processing algorithms

2.3 Hydrocarbon-free gas mixtures / recirculating gas systems

Safety requirements (ATEX) on flammable gases and ever-increasing costs of noble gas

Straw Chambers: challenges/tasks

2.4 Mechanics: thinner, smaller diameter, longer straw tubes / mechanical stability

6+6 μm mylar + 3 μm glue wound-type or 25 μm seamless (resistive) type, few mm diameter, several m length / self-supporting structures

2.5 Material studies

Creep under tension (tension relaxation), gas leakage (operation under vacuum or overpressure)

2.6 Electronics

Leading and trailing time resolution for 4D measurements and for dE/dx with time over threshold

			~	-	-	-	~	~	~		~	~	-	-	-	-	· · ·		•	-
		DRDT			<	2030				1	2030-	2035			2035- 2040	204 204		>20	945	
	Rad-hard/longevity	1.1	•	•							•				•					
Inner/central	Low X _o	1.2									•				•					
tracking with PID	IBF (TPC only)	1.2													•	ŏ	5			
Proposed technologies:	Time resolution	1.1			•						•				•		5			
TPC+(multi-GEM, Micromegas, Gridpix), drift chambers, cylindrical layers of MPGD, straw chambers	Rate capability	1.3	•								۲					•				
	dE/dx	1.2	•								•				•					
	Fine granularity	1.1									•				•					

5 ¹⁷ ¹⁶ ¹⁶

2. Inner trackers (TPCs)

Challenges

- High rate,
- low mass,

• granularity,

- dE/dx & cluster counting
- Ion backflow suppression,
- gas mixture optimization and Eco gas mixtures

Tasks to be defined

		ŝ	Fundance de la contraction de	Contract "Barry" of Contract" "Barry" of Contract" "Barry" of Contract" (Contract, Contract, Con	Per Current Control Co	^{CCC,1} h ^{FCC,esh} Muon ^{CONdes}
		DRDT	< 2030	2030-2035	2035- 2040- 2040 2045	>2045
	Rad-hard/longevity	1.1 🔴	• •	•	•	
Inner/central	Low X _o	1.2 🔴		•		
tracking with PID	IBF (TPC only)	1.2 🔴	•			
Proposed technologies:	Time resolution	1.1 🦲	•	•		
TPC+(multi-GEM, Micromegas, Gridpix), drift chambers, cylindrical	Rate capability	1.3 🔴	•	•		
layers of MPGD, straw chambers	dE/dx	1.2 🔴		•		
	Fine granularity	1.1	•	•		

3. Calorimetry

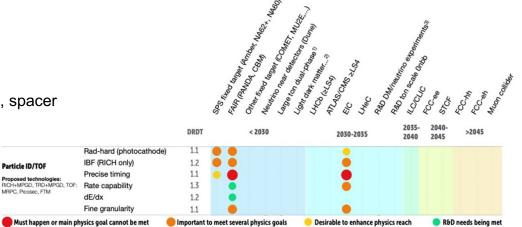
Challenges to develop large detector area

- Uniformity of the response and dynamic energy range
- Rate capability (x resistive material detector): 1 kHz/cm²
- Time resolution O(100ps)

- + Not necessarily for large-area
 - + Eco-gas mixture
 - + Stable performance (gas gain, time resolution, etc)
 - + High radiation hardness

		DRDT	< 2030	2030-2035	2035- 2040	2040- 2045	>2045
	Rad-hard/longevity	1.1					
Preshower/	Low power	1.1			•		
Calorimeters	Gas properties (eco-gas)	1.3					
Proposed technologies:	Fast timing	1.1			ē	5	
RPC, MRPC, Micromegas and GEM, µRwell, InGrid (integrated	Fine granularity	1.1					
Micromegas grid with pixel readout), Pico-sec, FTM	Rate capability	1.3					
	Large array/integration	1.3			•		ě ě e

In a constraint of the second second


4. PID-Photo/ToF

Challenges ToF:

- Uniform rate capability, time resolution, and efficiency over large detector area
- New material for high rate (low res., rad.hard.): uniform gas distribution, spacer material, spacer geometry, thinner structures: mechanical stability and uniformity
- Eco-gas mixture, Gas recuperation systems
- Electronics: Low noise, fast rise time, sensitive to small charge

Challenges photodetectors:

- Preserve the photocathode efficiency by IBF and more robust photoconverters
- Very low noise, large dynamic range of the FEE
- Separate the TR radiation and the ionization process

4. PID-Photodetectors

Task 4.1: Development of large-area, high-rate, timing MRPCs

• Goal: rate and timing capabilities. 25 kHz/cm2, $\sigma_t \sim 50$ ps

Task 4.2: Development of MPGD-based timing detectors

• Goal: 15-20 ps time resolution, large areas, stability

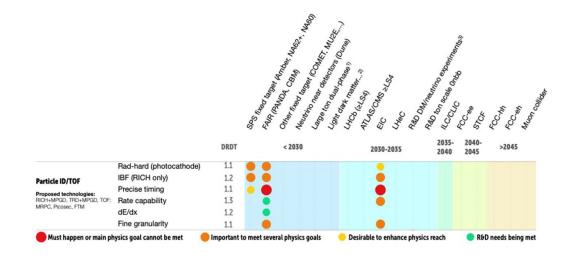
Task 4.3: Ultra high-rate MRPC development

• Goal: 100-150 kHz/cm², $\sigma_t \sim 50$ ps , MRPC technology in single cell/channel layout

Task 4.4: Position Sensitive Timing RPCs.

• Development of large area (~m²) position sensitive (< 1 mm) and timing (< 100 ps) RPCs

Task 4.5: Development of photocathodes for Cherenkov-based timing detectors


• Goal: preserve efficiency and lifetime

Task 4.6: Development of photoconverters for RICH

Goal: robust photoconverters compatible with operation in gas detectors (hydrogenated nanodiamonds)

Task 4.7 New generation of TRDs

· Goal: differentiate response to X-ray and ionization

5. TPCs for rare event searches

Challenges:

- Reconstruct low-energy nuclear tracks (down to 10 keV energyscale) with high granularity and close to the thermal diffusion limit.
- Low energy threshold (keV or less) far from atmospheric pressure (10mbar-20bar).
- Reach the intrinsic energy resolution limit of the gas (Fano factor).
- Achieve high optical gain across pressures and gas mixtures.
- Potentially achieve single-electron sensitivity.
- Develop radiopure amplification structures.

			Do fite	Film a series in the series of	Lon can Was where I have a construction of the can have a cons	Teb Dutineutino Per Lan Section LC Strate Orto	۲۵ ۲۵ ۲۵ ۲۵ ۲۵	Much Cash
		DRDT	Č.	< 2030	2030-2035	2035	40-2045 >20	
	Low power	1.4						
	Fine granularity	1.4						
TPC for rare decays	Large array/volume	1.4		• •				
Proposed technologies:	Higher energy resolution	1.4		• • •				
PC+MPGD operation (from very ow to very high pressure)	Lower energy threshold	1.4				i i		
	Optical readout	1.4						
	Gas pressure stability	1.4				Ó		
	Radiopurity	1.4						

5. TPCs for rare event searches (tasks)

Task 5.1: Nuclear Recoil reconstruction (gas mixtures, structures, electronics, simulation)

 Goal: establish O(10keV) nuclear-track sensitivity close to the thermal diffusion limit, with O(100um) 3D reconstruction, and z-determination capabilities in conditions of scientific interest

Task 5.2: Optical readout in large volumes (gas mixtures, dual-phase, scintillation studies, structures, photon sensors, simulation)

Goals: establish stable optical gain in the range 10⁴-10⁵ (10³-10⁴) ph/e for gas mixtures (and pure-noble gases) in conditions of scientific interest.
 Develop new T0-determination schemes based on scintillation.

Task 5.3: Radiopurity (isotope purification, material selection, radiopurity of amplification structure)

• Goal: increase radiopurity levels by a factor of at least x10 relative to today's levels.

Task 5.4: TPCs at the physical limit (single-electron sensitivity, Fano factor -level resolution, low energy threshold across pressures, high purity in large volumes, new geometries)

• Goal: achieving few-electron sensitivity, Fano factor –level energy resolution, and high purity (<10% charge loss) in large volumes

6. Beyond HEP

- It is very hard to identify common "Beyond-HEP" challenges because the applications are too different from each other
- We can identify different tasks:
 - 6.1 Single photon MPGD-based detector for medical imaging
 - 6.2 RPC-PET: Development of PET devices based on RPCs providing state-of-the-art PET position resolution (< 1 mm) and moderate efficiency focused on Preclinical-PET and Brain PET.
 - (further feedback from the community)

WG2 chapter content

• Summary of challenges

(ECFA compatible but filtered with survey results \rightarrow define priorities)

- **DRD1 Task proposals** (compatible with ECFA but filtered with survey results)
- ... more?

WG2 chapter content

• Summary of challenges

(ECFA compatible but filtered with survey results \rightarrow define priorities)

- **DRD1 Task proposals** (compatible with ECFA but filtered with survey results)
- New ideas, things we would like to have, challenges not in line with ECFA strategic topics
 - DRD1/WG2 proposal is not a strict copy of the ECFA roadmap, eventually. Include community feedback about possible cross-tasks, and new ideas for given applications. These could be a topic of common projects (and later strategic R&D). Not all ideas went to the survey (based on ECFA roadmap) → fill this part in the next proposal iterations, together with the community.

Next steps

- Elaborate on priority research topics
- Interact and iterate with the community
- The survey is ongoing new priority topics may emerge

Backup

ECFA matrix

		DRDT			< 203	0		2030	-2035	203	-	2040- 2045	>2	2045	
	Rad-hard/longevity	1.1						•						•	•
Muon system	Time resolution	1.1						-				5	-	•	•
Proposed technologies:	Fine granularity	1.1	•					•	•					•	ŏ
RPC, Multi-GEM, resistive GEM,	Gas properties (eco-gas)	1.3							2010		1		ŏ	•	ŏ
Micromegas, micropixel Micromegas, µRwell, µPIC	Spatial resolution	1.1						•	•				ŏ	ŏ	ŏ
	Rate capability	1.3					ē				R		ŏ	•	
	Rad-hard/longevity	1.1	•		•				2						
Inner/central	Low X _o	1.2	ŏ												
tracking with PID	IBF (TPC only)	1.2	ē							ē		i i			
Proposed technologies:	Time resolution	1.1													
TPC+(multi-GEM, Micromegas, Gridpix), drift chambers, cylindrical	Rate capability	1.3						ĕ			2				
layers of MPGD, straw chambers	dE/dx	1.2	õ					ĕ							
	Fine granularity	1.1	ē		•			ĕ		ē					
	Rad-hard/longevity	1.1													
Preshower/ Calorimeters	Low power	1.1											-	-	
	Gas properties (eco-gas)	1.3													
Proposed technologies:	Fast timing	1.1								-		5		•	ŏ
RPC, MRPC, Micromegas and GEM, µRwell, InGrid (integrated	Fine granularity	1.1											•	•	•
Micromegas grid with pixel readout), Pico-sec, FTM	Rate capability	1.3								ē				Ö	õ
	Large array/integration	1.3											Ŏ	ŏ	•
	Rad-hard (photocathode)	1.1	•					•					-	-	-
Particle ID/TOF	IBF (RICH only)	1.2	Ö					•							
Proposed technologies:	Precise timing	1.1													
RICH+MPGD, TRD+MPGD, TOF:	Rate capability	1.3		ē				ĕ							
MRPC, Picosec, FTM	dE/dx	1.2													
	Fine granularity	1.1						•							
	Low power	1.4							•						
	Fine granularity	1.4							ĕ	•					
TPC for rare decays	Large array/volume	1.4			•				•	•					
Proposed technologies:	Higher energy resolution	1.4			•				ĕ	ŏ					
TPC+MPGD operation (from very low to very high pressure)	Lower energy threshold	1.4							- ē	•					
	Optical readout	1.4								ē					
	Gas pressure stability	1.4								•					
	Radiopurity	1.4								ĕ					

Must happen or main physics goal cannot be met

Important to meet several physics goals

R&D needs being met

Large ton dual-phase (PandaX-4T, LZ, DarkSide -20k, Argo 200k, ARIADNE ...)
 Light dark matter, solar axion, Onbb, rare nuclei&ions and astroparticle reactions, Ba tagging)
 R&D for 100-ton scale dual-phase DM/neutrino experiments

ECFA roadmap table 1.8

Muon System	Inner and Central tracking	Calorimetry	Photon detection	TOF	Rare decays
 Radiation hardness and 	Drift chambers	• Uniformity of the response of	Preserve the photocathode	 Uniform rate capability and 	 Radio-purity of the materials
stability of large area up to	 High rate, unique volume, high granularity, low 	the large area and dynamic	efficiency by IBF and more	time resolution over large	 Low background
integrated charges of hundreds	mass	energy range	robust photoconverters	detector area	 High granularity
of C/cm2:	 Hydrocarbon-free mixture for long-term and 	 Optimization of weights for 	 Gas radiator: alternative to 	 New material for high rate 	 For large volume detectors:
 aging issues and discharges; 	high-rate operation	different thresholds in digital	CF4	(low resistivity, radiation	transparency over large distance
 Operation in a stable and 	• Prove the cluster counting principle with the related	calorimeters	 Gas tightness 	hardness)	 Pressure stability and control
efficient manner with incident	electronics	 Rate capability in detectors 	 Very low noise when coupling 	- uniform gas distribution	· Electronics with large
particle flows up to ~10	 Mechanics: new wiring procedure, new wire 	based on resistive materials:	large capacitance	- thinner structures:	dynamic range and flexible
MHz/cm2:	materials	resistivity uniformity, discharge	 Large dynamic range of the 	mechanical stability and	configuration.
- miniaturisation of readout	 Integration: accessibility for repairing 	issue at high rate and in large	FEE	uniformity	 Self-trigger capability
elements needed to keep		area detector	• Separate the TR radiation and	 Eco-gas mixture 	 Low noise electronics
occupancy low	TPC	 R&D on sub-ns in active 	the ionization process	 Electronics: Low noise, fast 	 Fast electronics
 Manufacturing, on an 	• R&D on detector sensors to suppress the IBF ratio	elements: resolution stables over	• In TRD use of cluster counting		 Optical readout
industrial scale, large detectors	 Optimize IBF together with energy resolution 	wide range of fluxes	technique and improve it by	charge	
at low cost, by means of a	 Gain optimization: IBF, discharge stability 	· Gas homogeneity and stable	means of a InGrid	 Possibly optical readout 	
process of technological transfer	 Uniformity of the response of the sensors 	over time		· Precise clock distribution and	
to the industry and identifies	· Gas mixture: stability, drift velocity, ion mobility,	 Eco-friendly gas mixture for 		synchronization over large area	
processes transferable to	aging	RPC			
industries	 Influence of Magnetic field on IBF 	 Stability of the gas gain: fast 			
 Identification of eco-friendly 	 High spatial resolution 	monitoring of gas mixture and			
gas mixture and mitigation of	 Very low material budget (few %) 	environmental conditions			
the issue related to the operation	· Mechanics: thickness minimization but robust for	 Mechanics: 			
with high WGP gas mixture:	precise electrical properties for stable drift velocity	- large area needed to avoid			
 gas tightness;gas 	 Integration: cooling of electronics 	dead zone: limitation on size and			
recuperation system; accessibility		planarity of PCB is an issue			
for repairing	Straw chambers	- multi-gap with ultra-thin			
 Study of resistive materials 	 Ultra-long and thin film tubes 	modules: very thin layer of glass			
(RPC and MPGD):	 "Smart" designs: self-stabilized straw module, 	and HPL electrodes, gas gap			
- higher gain in a single	compensating relaxation	thickness uniformity few micron			
multiplication layer, with a	 Small diameter for faster timing, less occupancy, 				
remarkable advantage for	high rate capability				
assembly, mass production and	• Reduced drift time, hit leading times and trailing time				
cost	resolutions, with dedicated R&D on the electronics				
- new material and production	 PID by dE/dx with "standard" time readout and 				
techniques for resistive layers	time-over-threshold				
	• 4D-measurement: 3D-space and (offline) track time				
• Thinner layers and mechanical	· Over-pressurized tubes in vacuum: control the				
precision over large area	leakage rate to maintain the shape				