Helicity and vorticity in heavy-ion collisions and hyperon polarization

Evgeni Kolomeitsev

Matej Bel University, Banska Bystrica, Slovakia Joint Institute for Nuclear Research, Dubna, Russia

work with Nikita Tsegelnik and Vadim Voronyuk

Phys. Rev. C **107** (2023) 034906 Particles **2023** (2023) 373 arXiv:2305.10792 [nucl-th

Origin of global polarization in collective processes

$$\vec{l} = \frac{\vec{L}}{A} = \pm \vec{e}_y \frac{b}{2} \sqrt{s_{NN} - 4m_N^2}$$
 angular momentum per nucleon

for
$$\sqrt{s_{NN}} = 2.5 \,\text{GeV}$$
 $l \approx 42\hbar(b/10 \,\text{fm})$
for $\sqrt{s_{NN}} = 11 \,\text{GeV}$ $l \approx 275\hbar(b/10 \,\text{fm})$

Initial angular momentum of colliding nuclei

Mechanism of angular-momentum transfer from orbital one to spin

In equilibrium! density matrix
$$\hat{\rho} = \frac{1}{Z} \exp \left[-\frac{\hat{H}}{T} + \frac{\omega(\hat{L} + \hat{S})}{T} \right]$$
 spin *S* and angular moment *L* operators hydrodynamic vorticity $\boldsymbol{\omega} = \operatorname{rot} \boldsymbol{v}$

elementary processes

• The experimental data of global Λ and anti- Λ polarization

Setup
The Parton-Hadron-String Dynamic model: the generalized off-shell transport equations, Dynamical Quasi-Particle Model (for partons), FRITIOF Lund (strings breaking) PYTHIA and JETSET (jet production and fragmentation), Chiral Symmetry Restoration,

Kinetics \rightarrow **fluidization** \rightarrow hydrodynamic quantities

Fluidization criterion: cells with $\varepsilon > 0.05$ GeV/fm³. Spectators do not form fluid!

Spectator separation: $||y_{spectator}| - y_{beam}| \le 0.27$ *Fermi motion*

$$\frac{u_{\mu}T^{\mu\nu} = \varepsilon \, u^{\nu}}{u^{\mu} = \gamma(1, \boldsymbol{v})} \qquad T^{\mu\nu} = \sum_{a, i_a} \frac{p_{i_a}^{\mu}(t) \, p_{i_a(t)}^{\nu}}{p_{i_a}^0(t)} \Phi\left(\boldsymbol{x}, \boldsymbol{x}_{i_a}(t)\right)$$

 Φ – smearing function

$$J_B^{\mu} = \sum_{a,i_a} B_{i_a} \frac{p_{i_a}^{\mu}(t)}{p_{i_a}^{0}(t)} \Phi\left(\boldsymbol{x}, \boldsymbol{x}_{i_a}(t)\right) \qquad \boldsymbol{n}_B = u_{\mu} J_B^{\mu}$$
$$\boldsymbol{\varepsilon}, \boldsymbol{n}_B \longrightarrow \mathbf{EoS} \longrightarrow T(\boldsymbol{\varepsilon}, \boldsymbol{n}_B)$$

• Angular momentum transfer

Small b: L is small but large fraction of it can be transferred Large b: L is big but nuclear overlap is small and less L is transferred Transferred angular momentum distribution depends weakly on the collision energy

transition time scale ~10fm/c

similar dependence was derived in [Becattini, Piccinini, Rizzo, PRC77 (2008)]

• Velocity and vorticity fields

Hydrodynamic velocity field $\varepsilon > 0.05 \,\mathrm{GeV/fm^3}$ $\boldsymbol{v} \approx \boldsymbol{v}_{\mathrm{Hubble}} = (\alpha_T \, x, \alpha_T \, y, \alpha_z \, z)$

Hydrodynamic vorticity field

• Hyperon and Anti-hyperon production

Dynamics of hyperon production

We store the time marker for each 'newly-created' particle. After the completion of a code run, we can look at survived hyperons and obtain the distribution of the time of the last interaction, $t_{l.i.}$ (TLI).

• Polarization source

• Hyperon Polarization

Different polarization of particles and antiparticles for all kinds of hyperons

Polarization of all hyperon species decrease with an energy increase for $\sqrt{s_{NN}} \gtrsim 5 \,\mathrm{GeV}$

The strongest decrease and smallest difference is for Ω and $\overline{\Omega}$. The energy trend is also different.

The polarization hierarchy holds for the energy range $\sqrt{s_{NN}} = 3.5 - 11.5 \,\text{GeV}$: $P_{\Xi} \approx P_{\overline{\Lambda}} > P_{\overline{\Sigma}^0} > P_{\Lambda} > P_{\Sigma^0} > P_{\Xi}$

The maximum of Λ and $\overline{\Lambda}$ polarization occurs at $\sqrt{s_{NN}} \approx 4 \,\text{GeV}$.

• Feed-down effects

The feed-down contributions:

• **strong** decays are already included in PHSD

• weak decays:
$$\Xi \to \Lambda + \pi$$
,

contribution from Ω is negligible

• electromagnetic decays: $\Sigma \to \Lambda + \gamma$

The relationship between the multiplicities of Λ and Σ hyperons is unknown, so the filled area in the figure corresponds to their different proportions

Strong polarization suppression is caused by the 15 *feed-down from* Σ^0 *and* $\overline{\Sigma}^0$ hyperons.

Conclusion

- ✓ The (2+1)D Hubble-like expansion + vorticity at the system edges \leftrightarrow two deformed elliptical vortex rings.
- ✓ Different polarization of particles and antiparticles for all hyperons.
- ✓ The difference in polarizations arises naturally and can be related to the difference in the thermodynamic conditions and vorticity field.
- ✓ Strong polarization suppression due to the feed-down from $\Sigma^0(\overline{\Sigma}^0)$.
- \checkmark The helicity separation effect in the reaction plane.