

Institute of Particle and Nuclear Physics Faculty of Mathematics and Physics Charles University

Precision measurements of kaon decays at NA62 experiment

Zdenko Hives on behalf of NA62 collaboration

Outline

- Overview of NA62
- Precision measurements of rare decays:
 - $\circ \quad K^+ \to \pi^0 e^+ \nu \gamma \left(K_{e3g} \right)$
 - $\circ \quad K^+ \to \pi^+ \mu^+ \mu^- (K_{\pi \mu \mu})$
 - $\circ \quad K^+ \to \pi^+ \gamma \gamma \left(K_{\pi \gamma \gamma} \right)$
 - $\circ \quad K^+ \to \pi^+ \pi^- \pi^+ \gamma \left(K_{3\pi\gamma} \right)$

• Summary

NA62 Experiment

~200 participants, ~30 institutes from:

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna, GMU-Fairfax, Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain, Mainz, Moscow, Napoli, Perugia, Pisa, Prague, Protvino, Roma I, Roma II, San Luis Potosi, Sofia, Torino, TRIUMF, Vancouver UBC

NA62 Timeline			
Feb. 2007:	NA62 Approval		
2009 - 2014:	Detector R&D and installation		
2015:	Commissioning		
<mark>2016 –</mark> 2018:	Run 1		
<mark>2021 –</mark> 2025:	Run 2		
Proposal for future: High Intensity Kaon Experiments			

NA62 Experiment

- NA62 is a fixed-target experiment at the North Area of CERN SPS
- Primary p⁺ beam: 400 GeV/c, impinging on 400mm long beryllium target
- Secondary beam: 75 GeV/c, composition: π⁺(70%), p⁺(24%), K⁺(6%)
- Main goal: measure B(K→π⁺νν) with 10% precision, using "decay-in-flight" technique
- Requires ~10¹³ kaon decays
- Current theoretical prediction:

 $Br_{SM}(K \rightarrow \pi^+ v \overline{v}) = (8.4 \pm 1.0) \cdot 10^{-11}$

[Buras et al., JHEP11(2015)033]

• Latest experimental results:

 $\begin{aligned} \mathsf{Br}_{\mathsf{E949}}(\mathsf{K} {\rightarrow} \pi^+ v \overline{\mathsf{v}}) &= (17.3^{+11.5}_{-10.5\,stat}) \cdot 10^{-11} \\ & [\mathsf{E949}/\mathsf{E787}[\mathsf{Phys.}\,\mathsf{Rev}\,\mathsf{D}\,\mathsf{79},\,\mathsf{092004}\,(2009)]] \\ \mathsf{Br}_{\mathsf{NA62}}(\mathsf{K} {\rightarrow} \pi^+ v \overline{\mathsf{v}}) &= (10.6^{+4.0}_{-3.4\,stat} \pm 0.9_{syst}) \cdot 10^{-11} \\ & [\mathsf{NA62}[\mathsf{JHEP06}(2021)\mathsf{093}]] \end{aligned}$

NA62 Detector System Overview

[JINST 12 (2017) P05025]

5

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$: Introduction

- Long distance decay described by Chiral Perturbation Theory
- Measurement goals:

0

$$R_{j} = \frac{\mathcal{B}(K_{e3\gamma}j)}{\mathcal{B}(K_{e3})} = \frac{\mathcal{B}(K^{+} \rightarrow \pi^{0}e^{+}\nu\gamma | E_{\gamma}^{j}, \theta_{e\gamma}^{j})}{\mathcal{B}(K_{e3})} \xrightarrow{\text{Phase space conditions}} \underbrace{[\text{Eur. Phys. J. C 50 (2007)]}}_{[\text{Eur. Phys. J. C 50 (2007)]}}$$

$$\boxed{\begin{array}{c|c} & E_{\gamma}^{j}, \theta_{e\gamma}^{j} & \text{ChPT} \\\hline R_{1} \times 10^{2} & E_{\gamma} > 10 \text{ MeV}, \theta_{e\gamma} > 10^{\circ} & 1.804 \pm 0.021 \\R_{2} \times 10^{2} & E_{\gamma} > 30 \text{ MeV}, \theta_{e\gamma} > 20^{\circ} & 0.640 \pm 0.008 \\R_{3} \times 10^{2} & E_{\gamma} > 10 \text{ MeV}, 0.6 < \cos \theta_{e\gamma} < 0.9 & 0.559 \pm 0.006 \\\hline \end{array}}$$

Bremsstrahlung

• T-violation effects:

where ξ is the T-odd observable (in kaon rest frame), A_{ξ} is the asymmetry variable with $N_{+}(N_{-})$ being the numbers of events with positive (negative) ξ . $A_{\xi} \in (-10^{-4}, -10^{-5})$ [SM and beyond]

[Eur. Phys. J. C 50 (2007)]

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$: Selection

Normalisation: $K^+ \rightarrow \pi^0 e^+ \nu (K_{e3})$

- 1 downstream track with e⁺ PID
- Vertex with K⁺ upstream track
- 2γ clusters in LKr with $m_{\gamma\gamma}$ compatible with π^0
- No additional photons in LAV / SAC
- Cut on $m_{miss}^2(K_{e3}) = (P_K P_{\pi^0} P_e)^2$

Signal: $K^+ \rightarrow \pi^0 e^+ \nu \gamma (K_{e3\nu})$

- 1 downstream track with e⁺ PID
- Vertex with K⁺ upstream track
- 2γ clusters in LKr with $m_{\gamma\gamma}$ compatible with π^0 + 1 radiative γ
- No additional photons in LAV / SAC
- Cut on $m_{\gamma\gamma}^2(K_{e3\gamma}) = (P_K P_{\pi^0} P_e P_{\gamma})^2$ and $m_{miss}^2(K_{e3})$

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$: Analysis

Procedure for R_i:

$$R_{j} = \frac{\mathcal{B}(K_{e3\gamma}j)}{\mathcal{B}(K_{e3})} = \frac{N_{Ke3\gamma}^{obs} - N_{Ke3\gamma}^{bkg}}{N_{Ke3}^{obs} - N_{Ke3}^{bkg}} \frac{A_{Ke3}}{A_{Ke3\gamma}j} \frac{\varepsilon_{Ke3}^{trig}}{\varepsilon_{Ke3\gamma}j}$$

- Bkg from accidental activity in LKr (data driven estimation), from misidentified e+ or undetected γ (MC driven estimate)
- Acceptances evaluated by MC
- Trigger efficiencies measured with data

	Normalization	S_1	S_2	S_3
Selected candidates	6.6420×10^7	1.2966×10^5	0.5359×10^{5}	0.3909×10^{5}
Acceptance	$(3.842 \pm 0.002)\%$	$(0.444 \pm 0.001)\%$	$(0.514 \pm 0.002)\%$	$(0.432 \pm 0.002)\%$
Accidental	—	$(4.9 \pm 0.2 \pm 1.3) \times 10^2$	$(2.3 \pm 0.2 \pm 0.3) \times 10^2$	$(1.1 \pm 0.1 \pm 0.5) \times 10^2$
$K^+ ightarrow \pi^0 \pi^0 e^+ \nu$	_	$(1.1\pm1.1)\times10^2$	$(1.1\pm1.1)\times10^2$	$(0.1\pm0.1)\times10^2$
$K^+ ightarrow \pi^+ \pi^0 \pi^0$	—	< 20	< 20	< 20
$K^+ \to \pi^+ \pi^0$	$(1.0\pm1.0)\times10^4$	—	_	_
Total background	$(1.0 \pm 1.0) \times 10^4$	$(6.0 \pm 1.8) \times 10^2$	$(3.4 \pm 1.2) \times 10^2$	$(1.2 \pm 0.6) \times 10^2$
Fractional background	$1.6 imes 10^{-4}$	0.46×10^{-2}	$0.64 imes 10^{-2}$	0.29×10^{-2}

[arXiv:2304.12271]

$$A_{\xi} = A_{\xi}^{Data} - A_{\xi}^{MC}$$

$K^+ \rightarrow \pi^0 e^+ \nu \gamma$: Results and Comparison with the World

	[JETP Lett. 116 (2022)] [Eur. Phys. J. C 50 (2007)] [Phys. Atom. Nucl. 70 (2007)] [Eur. Phys. J. C 81.2 (2021)]		[arXiv:2304.12271]	
	ChPT O(p ⁶)	ISTRA+	ОКА	NA 62
$R_1 imes 10^2$	1.804 ± 0.021	1.81 ± 0.03 ± 0.07	$1.990 \pm 0.017 \pm 0.021$	1.715 ± 0.005 ± 0.010
$R_2 imes 10^2$	0.640 ± 0.008	$0.63 \pm 0.02 \pm 0.03$	$0.587 \pm 0.010 \pm 0.015$	$0.609 \pm 0.003 \pm 0.006$
$R_3 imes 10^2$	0.559 ± 0.006	$0.47 \pm 0.02 \pm 0.03$	$0.532 \pm 0.010 \pm 0.012$	$0.533 \pm 0.003 \pm 0.004$
$A_{\xi}(S_1) imes 10^3$			$-0.1 \pm 3.9 \pm 1.7$	$-1.2 \pm 2.8 \pm 1.9$
$A_{\xi}(S_2) imes 10^3$	/	/	7.0 ± 8.1 ± 1.5	$-3.4 \pm 4.3 \pm 3.0$
$A_{\xi}(S_3) imes 10^3$			$-4.4 \pm 7.9 \pm 1.9$	-9.1 ± 5.1 ± 3.5

Decay Rate:

- factor > 2 more precise than previous experiments
- Relative uncertainty < 1%
- 5% smaller than ChPT prediction

T-asymmetry

- Compatible with no asymmetry
- Improved precision from OKA experiment
- Uncertainty still O(10²) larger than prediction

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Introduction

• FCNC decay described by the means of Chiral Perturbation Theory (ChPT), mediated by one photon exchange $K^+ \rightarrow \pi^+ \gamma^*$ [Nucl. Phys. B291 (1987) 692–719], [Phys. Part. Nucl. Lett. 5 (2008) 76–84]

 $z = \frac{m(\mu^+\mu^-)^2}{m_{\nu}^2}$

• Differential decay width:

Parametrization of Form Factor at O(p⁶): $W(z) = G_F M_K^2 (a_+ + b_+ z) + W^{\pi\pi}(z)$ $a_+, b_+: \text{ Form Factor parameters,}$ $W^{\pi\pi}(z): K_{3\pi} \text{ pion loop term}$

[JHEP 08 (1998) 004]

- Measurements:
 - FF parameters: a_+ , b_+
 - Model independent branching fraction $\mathcal{B}(K_{\pi\mu\mu})$
 - Forward-backward asymmetry

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Selection

Normalisation: $K^+ \rightarrow \pi^+ \pi^- (K_{3\pi})$

- High BR ~ 5.6%
- Kinematically similar
- Cancellation of systematic errors

Signal Selection:

- 3-track vertex
- Event in time with KTAG
- π^+ PID: no signal in MUV3
- μ^{\pm} PID: signal in MUV3
- Kinematic cuts to suppress $K_{3\pi}$ events
- $|m_{\pi\mu\mu} m_K| < 8 \, MeV/c^2$

Data Sample:

- Effective kaon decays N_K≈ 3.48×10¹²
- Events selected: 27679
- Background expected: ~8

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Branching Fraction and Form Factors

Model-independent $\mathcal{B}(K_{\pi\mu\mu})$ measurement:

• Reconstruct $d\Gamma(z)/dz$ from measured z spectrum (data divided into 50 equipopulated bins)

$$\left(\frac{d\Gamma(z)}{dz}\right) = \frac{N_{\pi\mu\mu,i}}{A_{\pi\mu\mu,i}} \frac{1}{\Delta z_i} \frac{1}{N_K} \frac{\hbar}{\tau_K}$$

where Δz_i - bin width, $N_{\pi\mu\mu,i}$ - number of signal events, $A_{\pi\mu\mu,i}$ - signal acceptance, N_K - effective number of kaon decays, \hbar – reduced Planck's constant, τ_K - mean K[±] lifetime

• Integrate over z to get:

$$B(K_{\pi\mu\mu}) = (9.18 \pm 0.08) \times 10^{-8}$$

[JHEP 11 (2022) 011]

[JHEP 11 (2022) 011]

Form factor measurement:

- Extract $|W(z)|^2$ from $d\Gamma(z)/dz$
- Find optimal a_+, b_+ by minimizing $\chi^2(a_+, b_+)$
- Results preferred negative $(\chi^2/ndf = 45.1/48, p-value = 0.59)$:
 - \circ $a_{+} = -0.575 \pm 0.013$
 - \circ $b_{+} = -0.722 \pm 0.043$
 - Correlation: $\rho(a_+, b_+) = -0.972$

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Comparison with the World

- Much improved precision
- Sample size ~9x larger than NA48/2
- No evidence for LFU

$K^+ \rightarrow \pi^+ \mu^+ \mu^-$: Forward-Backward Asymmetry

Definition:

- $\theta_{K\mu}$ is angle between the K^+ and μ^- 3-momenta in the $\mu^+\mu^-$ rest frame
- Forward-backward asymmetry:

$$A_{FB} = \frac{\mathcal{N}(\cos\theta_{K\mu} > 0) - \mathcal{N}(\cos\theta_{K\mu} < 0)}{\mathcal{N}(\cos\theta_{K\mu} > 0) + \mathcal{N}(\cos\theta_{K\mu} < 0)}$$

Results:

•
$$A_{FB} = (0.0 \pm 0.7_{stat} \pm 0.2_{syst} \pm 0.2_{ext}) \times 10^{-2} @ 68\% \text{ CL}$$

• $|A_{FB}| < 0.9 \times 10^{-2}$ @ 90% CL

[JHEP 11 (2022) 011]

$K^+ \rightarrow \pi^+ \gamma \gamma$: Introduction

- Radiative non-leptonic decay described by chiral perturbation theory (leading order at $O(p^4)$ with contributions from $O(p^6)$) [Phys. Lett. B 386 (1996) 403]
- Main kinematic variable:

$$z = \frac{(q_1 + q_2)^2}{m_K^2} = \frac{m_{\gamma\gamma}^2}{m_K^2}, \qquad \qquad y = \frac{p(q_1 - q_2)}{m_K^2},$$

where p is K^+ 4-momentum, $q_{1,2}$ are photons 4-momenta, m_K is mass of K^+ and $m_{\gamma\gamma}$ is di-photon invariant mass

• Decay width:

$$\frac{\partial\Gamma}{\partial y\partial z}(\hat{c}, y, z) = \frac{m_K}{2^9\pi^3} [z^2(|A(\hat{c}, z, y^2) + B(z)|^2 + |C(z)|^2) + (y^2 - \frac{1}{4}\lambda(1, r_\pi^2, z))^2 |B(z)|^2]$$

• Measurements:

non-zero $\mathcal{O}(p^6)$ contributions

- Measure \hat{c}
- Extrapolate model dependent branching franction

 $K^+ \rightarrow \pi^+ \gamma \gamma$: Signal Selection

Data sample:

- Full NA62 Run1 dataset
- Normalization channel: $K^+ \rightarrow \pi^+ \pi^0$

Signal selection:

- 1 good track in STRAW
- 2 good clusters in LKr
- K^+ π^+ matching tracks (vertex reconstructed)
- Kinematic cuts for daughter particles (total E, total p_T , $m_{\pi\gamma\gamma}$)

Additional sample cut:

• Redefinition of z as

$$z = \frac{(P_K - P_\pi)^2}{m_K^2}$$

• Signal region: z > 0.25

$K^+ \rightarrow \pi^+ \gamma \gamma$: Signal and Background

Signal events (z > 0.25):

- 4039 events found
 - \rightarrow ~10x more than NA48/2 and NA62-2007

Background:

- Cluster merging in LKr:
 - $K^+ \to \pi^+ \pi^0 \gamma, \pi^0 \to \gamma \gamma$ $K^+ \to \pi^+ \pi^0 \pi^0, \pi^0 \to \gamma \gamma$ 0
 - 0
- Missing tracks in STRAW: $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ 0
- Background contamination: 393 ± 20 events

Fitting procedure:

- MC reweighted for different values of \hat{c}
- Scan of \hat{c} to find maximum log-likelihood

$$ln\mathcal{L} = \sum_{i} (k_{i} ln\lambda_{i}(\hat{c}) - \lambda_{i}(\hat{c}) - \ln(k_{i}!))$$
$$\lambda_{i}(\hat{c}) = \lambda_{i}^{S}(\hat{c}) + \lambda_{i}^{B}$$

$K^+ \rightarrow \pi^+ \gamma \gamma$: Results and comparison with World

 $\mathcal{B}r(K^+ \to \pi^+ \gamma \gamma) = (9.73 \pm 0.17_{stat.} \pm 0.08_{syst.}) \times 10^{-7}$

 $\hat{c}_6 = 1.713 \pm 0.075_{stat.} \pm 0.037_{syst.}$

$K^+ \rightarrow \pi^+ \pi^- \pi^+ \gamma$: Introduction

- Theoretical: G. D'Ambrosio, G. Ecker, G.Isidori, H. Neufeld (1997)
 - $K^+ \rightarrow \pi^+ \pi^- \pi^+ \gamma$ described by chiral perturbation theory to order $O(p^4)$
 - Integrated for $E_{\gamma} > 5$ MeV $\mathcal{B}r(K^+ \rightarrow \pi^+\pi^-\pi^+\gamma)_{theor.} = (1.26 \pm 0.01) \cdot 10^{-4}$

[doi: 10.1007/s002880050554]

E_{γ}	$\Gamma_{ m GB}$	$\frac{\Gamma_{\rm GB} - \Gamma_{\rm Low}}{\Gamma}$	$\frac{\Gamma_{\rm E} - \Gamma_{\rm GB}}{\Gamma}$	$\Gamma_{\rm M}$	BR
10-20	$(2.32 \pm 0.02) \cdot 10^{-18}$	$-1.7 \cdot 10^{-3}$	$-4.2 \cdot 10^{-4}$	$1.3 \cdot 10^{-24}$	$(4.36 \pm 0.04) \cdot 10^{-5}$
20-30	$(7.63 \pm 0.07) \cdot 10^{-19}$	$-4.8 \cdot 10^{-3}$	$-1.2 \cdot 10^{-3}$	$3.2 \cdot 10^{-24}$	$(1.43 \pm 0.01) \cdot 10^{-5}$
30-40	$(2.62 \pm 0.03) \cdot 10^{-19}$	$-9.2 \cdot 10^{-3}$	$-2.4 \cdot 10^{-3}$	$4.1 \cdot 10^{-24}$	$(4.93 \pm 0.05) \cdot 10^{-6}$
40–50	$(7.66 \pm 0.08) \cdot 10^{-20}$	$-1.5 \cdot 10^{-2}$	$-4.1 \cdot 10^{-3}$	$3.2 \cdot 10^{-24}$	$(1.44 \pm 0.01) \cdot 10^{-6}$
50-60	$(1.43 \pm 0.02) \cdot 10^{-20}$	$-2.1 \cdot 10^{-2}$	$-6.2 \cdot 10^{-3}$	$1.3 \cdot 10^{-24}$	$(2.69 \pm 0.03) \cdot 10^{-7}$
60-70	$(7.23 \pm 0.09) \cdot 10^{-22}$	$-2.8 \cdot 10^{-2}$	$-8.5 \cdot 10^{-3}$	$1.2 \cdot 10^{-25}$	$(1.36 \pm 0.02) \cdot 10^{-8}$
10-70	$(3.44 \pm 0.03) \cdot 10^{-18}$	$-3.4 \cdot 10^{-3}$	$-8.5 \cdot 10^{-4}$	$1.3 \cdot 10^{-23}$	$(6.46 \pm 0.06) \cdot 10^{-5}$
[MeV]					

- Experimental:
 - M. M. Shapkin et al. (OKA collaboration), 2018
 - Collected ~450 events with $E(\gamma) > 30$ MeV

[arXiv:1808.09176]

- Measured Br(K⁺ $\rightarrow \pi^{+}\pi^{-}\pi^{+}\gamma) = (0.71 \pm 0.05) \times 10^{-5}$
- NA62 has capabilities to increase the number of observed decays by multiple orders of magnitude and validate the predictions on whole range of photon energy spectrum

Summary

- Analysis of $K^+ \rightarrow \pi^0 e^+ v \gamma$ finished and published in [arXiv:2304.12271]
 - Sample size is ~130k events in R_1 , ~54k in R_2 and ~39k in R_3
 - $\begin{array}{ll} \circ & \mathsf{R}_{\mathsf{j}} \text{ for individual regions:} & R_1 = (1.715 \pm 0.005_{stat} \pm 0.010_{syst}) \times 10^2 \\ & R_2 = (0.609 \pm 0.003_{stat} \pm 0.006_{syst}) \times 10^2 \\ & R_3 = (0.533 \pm 0.003_{stat} \pm 0.004_{syst}) \times 10^2 \\ & A_{\xi}(S_1) = (-1.2 \pm 2.8_{stat} \pm 1.9_{syst}) \times 10^3 \\ & A_{\xi}(S_2) = (-3.4 \pm 4.3_{stat} \pm 3.0_{syst}) \times 10^3 \\ & A_{\xi}(S_3) = (-9.1 \pm 5.1_{stat} \pm 3.5_{syst}) \times 10^3 \end{array}$

• Analysis of $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ finished and published in [JHEP 11 (2022) 011]

- Sample size is 27679 events collected in 2017 and 2018 with negligible background Medal independent branching fraction: $\mathcal{P}(K) = (0.18 \pm 0.09) \times 10^{-8}$
- Model independent branching fraction: $\mathcal{B}(K_{\pi\mu\mu})$
- Form Factors extracted:
- Forward-Backward asymmetry:

$$B(K_{\pi\mu\mu}) = (9.18 \pm 0.08) \times 10^{-6}$$

$$a_{+} = -0.575 \pm 0.013 , b_{+} = -0.722 \pm 0.043$$

$$A_{FB} = (0.0 \pm 0.7_{stat} \pm 0.2_{syst} \pm 0.2_{ext}) \times 10^{-2} @ 68\% \text{ CL}$$

$$9 \times 10^{-2} @ 90\% \text{ Cl}$$

$$|A_{FB}| < 0.9 \times 10^{-2}$$
 @ 90% CL

- Analysis of $K^+ \rightarrow \pi^+ \gamma \gamma$ (preliminary results)
 - Sample size is 4039 events collected in Run1 with ~10% background contamination
 - Branching fraction:
 - Form Factor parameter:

- $\mathcal{B}r(K^+ \to \pi^+ \gamma \gamma) = (9.73 \pm 0.17_{stat.} \pm 0.08_{syst.}) \times 10^{-7}$ $\hat{c}_6 = 1.713 \pm 0.075_{stat.} \pm 0.037_{syst.}$
- Analysis of $K^+ \rightarrow \pi^+ \pi^- \pi^+ \gamma$ is in progress. Currently the background processes are being evaluated.

Institute of Particle and Nuclear Physics Faculty of Mathematics and Physics Charles University

Backup Slides