Neutral pion identification at Future Circular Collider

Matej Haviernik Institute for Particle and Nuclear Physics

Supervisor: Mgr. Jana Faltová, Ph.D.

FCC

100 km collider at CERN following up on HL-LHC 2 stages:

FCC-ee: e⁺e⁻collider (2040)

- 88-365 GeV, multiple runs
- EW sector + Higgs & t
	- Vector boson mass & decay width, A_{FB} , *αS (M^Z),* couplings

FCC-hh: pp collider with max. CMS energy of 100 TeV

Proposed detectors for FCC-ee

A. Abada et. al. FCC-ee:The Lepton Collider. The European Physical Journal Special Topics, 228:261–623, 201

CLD – CLIC-Like Detector

- Pixel vertex detector + Si tracker
- ECAL: Si-W sampling calorimeter
- HCAL: Polystyrene scintillator

IDEA – Innovative Detector for Electron-Positron Accelerators

- Pixel vertex detector + wire chamber
- MPGD & lead layers
- CALO: Dual-readout design with Cherenkov & scintillators

FCC-ee noble liquid calorimetry

Modified IDEA design - LAr+lead sampling ECAL calorimeter & HCAL calorimeter with scintillating tiles

- Advantages: good energy resolution, uniform response
- LAr calorimeter projected also for FCC-hh due to radiation hardness

ATLAS TileCal-like sampling calorimeter with scintillating tiles & steel absorbers

LAr sampling calorimeter with lead absorbers

M. Aleksa. Noble Liquid Calorimetry: Input proposals in Track 2. Presented at: ECFA Detector RD Roadmap Task Force 6: 2nd Calorimetry Community Meeting, [online]: <https://indico.cern.ch/event/1246381>

N. Morange. Noble Liquid Calorimetry for FCC-ee. Instruments, 6(4), 2022.

Neutral pion decay

 $\pi^0 \rightarrow$ γγ with BR = 0.98823 ± 0.00034 Important decay product

• Decays of τ, Z & hadrons

γγ decay angle very small in LAB frame & most decays clustered around *αmin*

Problem: easy to misidentify as a single photon in a detector

 $\sin \frac{\alpha_{min}}{2}$

 $= \frac{m_\pi}{E_\pi}$

Data & simulated environment

Geant4 - 100 000 π^0 and γ

- $E = [0; 100] GeV$
- Uniform *φ, θ* and *E* distribution
- Threshold for shower particles = 0.05 GeV

Calorimetric environment – Barrel LAr sampling calorimeter in DD4HEP

- Granularity *∆θ × ∆φ* = 0.57◦ × 0.47◦ vs. *∆θ × ∆φ* = 0.14◦ × 0.47◦ (strip layer motivation)
- 12 radial layers

Final state – clustering information & cells (position, index, deposited E)

Task: identify neutral pions against photon background & evaluate the impact of high hranularity on identification efficiency

Clustering

Sliding window

- $N_{\eta} \times N_{\varphi}$ = 9x17 cluster (e- optimalization) for $E > E_{cut}$
- Low number of clusters per event

Topological clustering – cluster growing from seed cells with significance above a cut $\zeta_{cell} = \left|\frac{E_{cell}}{\sigma_{cell}^{noise}}\right| \geq S$

- Large number of clusters per event with irregular shape
- $S = 4$

Pion identification using clusters?

Ineffective (sliding window algorithm unoptimized for π^0) Sliding window – identify two-cluster events with *m = m^π*

- Rapid drop-off beyond *E* = 10 GeV
- Cluster merging due to overlapping electromagnetic showers

Multivariate analysis

Characterize events by a set of discriminating variables

Classify events into signal (S) or background (B) with ROC curve as a function of r_B against ε_S

TMVA ROOT, methods used:

- Rectangular cuts transparent, resistant to overtraining
- Boosted Decision Trees better performance

[online]: https://amva4newphysics.wordpress.com

Discriminating variables

Obtained from energy deposition in cells

- Longitudinal profile $E_{max} E_{2max} E_{iT}$, E_{i1} …
- Transversal profile *Eocore, W³³*

Cuts

Genetic Algorithm sampling of solutions

Parameters

Efficiency calculated for r_B = 0.8 Maximum at *E* = 20 GeV

- Drop in efficiency below 20 GeV
- Visibly better performance for HG

Eliminate the (counterintuitive) dropping below 20 GeV & raise performance – move on to BDT

PopSize 800 **Steps** 40 Cycles 5

BDT parameter optimization

Maximize AUROC + check Kolmogoroff-Smirnoff test

Default values found for high granularity - due to overtraining, values for low granularity were lowered

BDT results

• Higher efficiency – success, but still rapid descend below 20 GeV

Low-energy efficiency correction

mcc variable – invariant mass of the two topoclusters with highest E deposit

• Displayed very good separation at low E

Results comparison

The efficiency at low energies remains high at approx. 0.9, drop-off eliminated

Results obtained using Boosted Decision Trees Results obtained using Boosted Decision Trees with *m_{cc}*

In closing

Using MVA methods we obtained good $π⁰$ discrimination against single γ background

By combining cell information with topological clustering we eliminated the drop in ε_{ς} at low *E*

Demonstrated the importance of high granularity strip layer – instrumental for resolution of highly collimated decay products

How to follow up?

- Cluster merging & optimization
- More realistic simulated environment (varying granularity across layers)
- More advanced MVA methods (CNN)
- Improving the high energy regime

Thank you for your attention

Discriminating variable definition

- *Emax* The energy contained in a cell with the largest energy deposit in the second layer of the calorimeter
- *E***2***max* The second largest energy deposit in the second layer of the calorimeter
- *E*_{ocore} Energy deposited in cells surrounding the shower centre defined as

 $E_{ocore} = \frac{E(3) - E(1)}{E(1)}$

where *E*(*n*) is the total energy deposited in ±*n* cells surrounding the cell with the highest energy deposit

- *Eⁿ -* The sum of energy contained in the first *n* layers of the calorimeter
- *Ei***¹** Energy deposited in the *ith* layer of the calorimeter divided by energy deposited in the first layer
- $E_{i\tau}$ Energy deposited in the *ith* layer of the calorimeter divided by the total energy deposited in the calorimeter
- *Wnl* Variable determining shower width in a calorimeter layer *l*, defined as a normalized sum of energy over ±*n* cells in the *η* coordinate and ±1 cells in *ϕ*, weighted by the distance in the *η* × *ϕ* space

where ΔR is defined as $\Delta R^2 = (\eta - \eta_{max})^2 + (\phi - \phi_{max})^2$

$$
W_{nl} = \frac{\sum_{i=1}^{n} E_i \times \Delta R^2}{\sum_{i=1}^{n} E_i}
$$

Table 1 Summary table of the expected energy resolution for the different technologies. The values are measurements where available, otherwise obtained from simulation.
Those values marked with "?" are estimates since neit

